
Reviews of Geophysics

Dynamics of glide avalanches and snow gliding

Christophe Ancey1 and Vincent Bain2

1Laboratory of Environmental Hydraulics, School of Architecture, Civil and Environmental Engineering, École
Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2Toraval, Les Favrets, Héry-sur-Ugine, France

Abstract In recent years, due to warmer snow cover, there has been a significant increase in the number
of cases of damage caused by gliding snowpacks and glide avalanches. On most occasions, these have been
full-depth, wet-snow avalanches, and this led some people to express their surprise: how could low-speed
masses of wet snow exert sufficiently high levels of pressure to severely damage engineered structures
designed to carry heavy loads? This paper reviews the current state of knowledge about the formation
of glide avalanches and the forces exerted on simple structures by a gliding mass of snow. One particular
difficulty in reviewing the existing literature on gliding snow and on force calculations is that much of
the theoretical and phenomenological analyses were presented in technical reports that date back to the
earliest developments of avalanche science in the 1930s. Returning to these primary sources and
attempting to put them into a contemporary perspective are vital. A detailed, modern analysis of them
shows that the order of magnitude of the forces exerted by gliding snow can indeed be estimated correctly.
The precise physical mechanisms remain elusive, however. We comment on the existing approaches in light
of the most recent findings about related topics, including the physics of granular and plastic flows, and
from field surveys of snow and avalanches (as well as glaciers and debris flows). Methods of calculating the
forces exerted by glide avalanches are compared quantitatively on the basis of two case studies. This paper
shows that if snow depth and density are known, then certain approaches can indeed predict the forces
exerted on simple obstacles in the event of glide avalanches or gliding snow cover.

1. Introduction

Climate change has a significant impact on the frequency and intensity of gravity-driven flows (e.g., snow
avalanches and debris flows) due to its effects on snow melt, glacier retreat, runoff regimes, frozen soil
(permafrost), sediment production, timber line altitude, etc. [Beniston, 2003; Adam et al., 2009; Bebi et al., 2009;
Keiler et al., 2010; Stoffel and Huggel, 2012]. Climate change is therefore likely to influence the occurrence of
damage due to avalanches; however, the exact trend remains undecided and will be highly dependent on
the region concerned [Lavigne et al., 2012; Castebrunet et al., 2012; McClung, 2013]. Some studies have con-
cluded that there is no clear correlation between the frequency of extreme events and climatic conditions
[Schneebeli et al., 1998; Eckert et al., 2010a], whereas others have provided evidence that the runout distance
of extreme avalanches has decreased since the mid-1970s [Eckert et al., 2010b]. A few studies have reported
increased avalanche activity in recent years [Valt and Paola, 2013]. Regional climate models predict an increase
in wet-avalanche activity in the 21st century [Castebrunet et al., 2014].

Climate change poses numerous challenges to risk management. One emerging issue is the perceived
increase in the frequency of accidents due to wet-snow avalanches, especially glide avalanches (a particular
form of wet-snow avalanches, defined below). To the best of our knowledge, although field surveys to
date have shown the considerable variability in the nature of avalanche activity in recent decades (at least
until the 2000s), they have not revealed any clear trend between global warming and the frequency of
wet-snow avalanches [Baggi and Schweizer, 2009]. However, in recent years, numerous accidents caused by
gliding snowpacks and glide avalanches have been observed. For instance, although the 2011–2012 and
2012–2013 winters experienced very different snowpack formation conditions, both were associated with
glide avalanche activity [Mitterer and Schweizer, 2012; Pielmeier et al., 2013]. As some of these recent events
happened in areas not usually exposed to avalanches, the question arose as to whether avalanche risk maps
should be updated to take this “new” threat into account [Margreth, 2013]. The incredibly high pressures
exerted by snow and documented at some damaged facilities are further grounds for concern. For instance,
during the snowy winter of 1998–1999, the foundations of a chairlift tower in Elm (Switzerland) slipped 8 m
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Figure 1. View of the avalanche path and the chairlift hit by the 2 March 2012 avalanche at Saint-François-Longchamp.
Tower P2, near the lower station, was bent at its base. Two wide glide cracks can be seen on the upper part of the slope
(others are also visible in many places). The crack farthest to the right did not generate an avalanche, whereas the crack
farthest to the left led to the glide avalanche that damaged the chairlift.

downhill under the effects of gliding snow. A back calculation of the forces exerted by the snowpack on the
tower led to snow pressure estimates as high as 500 kPa [Ammann, 2000].

There is a tremendous body of work on the calculation of snow forces, including those generated by wet snow.
Historically, in avalanche-prone regions, inhabitants showed great awareness about the threat of avalanches
and coped with this by building their dwellings in relatively secure areas, often behind the protection of
dense forests and sometimes earth barriers [Laternser and Pfister, 1997; Rabusseau, 2007; Ancey, 2015]. In the
nineteenth century, engineers tried different techniques, including forestation and erecting man-made obsta-
cles composed of stakes and stone walls in starting zones in order to halt avalanche release. As André Roch
summarized, many of these attempts caused bitter disappointment [Roch, 1980]. In 1860, for instance, in
Barèges, French military engineers covered starting zones with bench terraces and planted an artificial for-
est of stakes and wooden fences [Campagne, 1905], yet within 10 years strong winds and heavy snow loads
had knocked this forest down. In Switzerland and Austria, kilometers of terraces and stone walls were built
between the late nineteenth and early twentieth centuries [Fankhauser, 1920; Sauermoser et al., 2011], and
the earliest snow rakes were tested too [Mougin, 1913; Sulzlée, 1950]. However, many of these works suffered
from poor design and were rapidly damaged by snow loads and avalanches. It was not until 1936, with the
creation of the Federal Institute for Snow and Avalanche Research (SLF) in Davos, that snow mechanics and
avalanche formation started to be studied using both laboratory experiments and field surveys, thus giving
a more consistent scientific framework for designing defensive structures. The original avalanche protection
guidelines written by Robert Haefeli and his colleagues have been gradually updated. Today, they are referred
to as the Swiss guidelines and are used worldwide [Margreth, 2007a].

This paper aims to review the state of the art of snow pressure calculations for gliding snowpacks and glide
avalanches. There is a considerable existing body of work on these topics, and although the precise physical
mechanisms governing gliding snow are still only partially understood, current computational methods do,
in fact, provide fairly good estimates of the forces involved. In the two case studies presented in this paper,
we decided to focus on simple structures (cylindrical obstacles such as chairlift towers), essentially not only
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Figure 2. Side view of tower P10 on 18 February 2013. The glide crack is about 60 m uphill from the tower. A track was
dug for the rescue operation. Courtesy of J.-L. Pons.

because of the availability of data and observations but also for the relatively greater ease in back calculating
snow pressure.

In the supporting information, we present two case studies of damage which occurred to ski lifts in France.

1. On 2 March 2012, a glide avalanche induced by a mild spell of weather damaged a chairlift
tower in Saint-François-Longchamp, a ski resort in the French Alps (see the tourist-made video on
https://www.youtube.com/watch?v=8eXKi6aiGlg). Figure 1 shows the avalanche path and its deposit near
the chairlift’s lower station (1900 m). The glide avalanche originated from an apparently consolidated glide
crack which had started to develop in early January. The slope angle just below the ridge line was quite steep
(4∘ between 2100 m and 2050 m) but quickly became gentler (30∘ between 2050 m and 1950 m). A thick
slab started to slip on the grassy slope; its initial surface was approximately 1.1 ha, and its mean thickness
was about 2.5 m, leading to an initial snow volume of about 25,000 m3.

2. On 16 February 2013, a cable car tower was tipped over by a gliding snow slab in Cauterets, a ski resort
close to the Franco-Spanish border. Figure 2 shows the compact snow slab resulting from the deposits of
numerous avalanches caused by heavy snowfall (10 m within 1 month at 1850 m); its slow slip (maximum
4 m d−1) exerted so much pressure on the tower that it was bent at its base.

Part 1 of this review begins with a phenomenological description of gliding snow and glide avalanches in
order to define the terms used below, describe the physical features of each phenomenon, and give indica-
tions on the level of damage incurred in France and Switzerland (see section 2). We will examine the snow
conditions that lead to the formation of a glide avalanche (see section 3). This problem is of paramount impor-
tance to ski resorts (for predicting occurrences of glide avalanches) and avalanche prevention professionals
(for mitigating the risk of glide avalanches by intervening directly in their starting zones).

Part 2 is devoted to the calculation of the forces exerted by gliding snow, or a glide avalanche, on a narrow
obstacle such as a lift tower. We first review calculations of the forces generated by a gliding/creeping snow-
pack (see section 4). This is a classic problem, but it has given rise to lively debates. Indeed, as the mechanical
behavior of snow is notoriously difficult to model, the only way to make progress on this issue has long been
seen to be great simplification of reality—retaining only the salient features of the real system. For instance,
the assumptions adopted for estimating snow forces in the Swiss guidelines [Margreth, 2007a] have been
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seen as oversimplified [McClung, 1993]. For this reason, we have attempted to outline each approach not
only by discussing their physical assumptions (together with their strengths and weaknesses) but also by
adapting their governing equations into forms that are consistent with current standards in mechanics. In
section 5, we review the different approaches to calculating the force exerted by a glide avalanche on a narrow
obstacle. As glide avalanches are a particular form of wet avalanche, much of the knowledge is drawn from
studies on wet-avalanche dynamics. This problem has been the subject of renewed interest in recent years.
Certain researchers stated that if such unexpectedly high pressures were recorded for wet-snow avalanches,
then doubts should be cast on the computational methods used in engineering. Such claims were perhaps
excessive—they came close to denying the results of a large body of empirical work—and inevitably pro-
voked a backlash, but a more gradual transformation in views is now taking place thanks to high-resolution
field measurements and a deeper understanding of the dynamics of granular and plastic flows. Section 6
compares the different approaches when applied to the two case studies.

An explanatory list of the notation used in this paper accompanies the appendices. The two case studies
are presented at length in the supporting information. The supporting information also includes additional
information about the effects of global warming on snowpacks and avalanche activity.

2. Snow Gliding and Glide Avalanches
2.1. Definitions
Snow gliding and glide avalanches remain the major stumbling blocks in our understanding of avalanches
and related processes. On the one hand, observations are abundant: they have already been described at
length in the earlier avalanche studies [Coaz, 1881; Mougin, 1922; Allix, 1925], and the terminology was estab-
lished a long time ago [de Quervain, 1965, 1981]. On the other hand, the picture of what precisely is happening
at a physical level is still blurred. In particular, a clear and consensual synthesis of the underlying mechanisms
of slip is still lacking. Here we provide a phenomenological description of snow gliding and glide avalanches
which serves as the basis for the analyses below. We do not enter into the details of the physical processes as
these are discussed in section 3. We also refer readers to the review papers by Jones [2004] and Höller [2012],
who have summarized a century of worldwide observations and the corresponding efforts at modeling.

When snow lies on a sloping surface, gravitational forces cause the snow to creep: the snowpack undergoes
vertical strains (snow compaction due to metamorphism and settlement) and shear strain (displacement par-
allel to the slope). Creeping is a process common to all materials exhibiting viscous-like behavior, and—even
for compressible materials like snow—it is therefore not considered to contribute insurmountable problems
in terms of modeling. Another mode of snowpack displacement is called gliding. Under certain conditions,
the entire snowpack may slip downhill at a slow velocity; i.e., the usual no-slip condition for flows over
impermeable rigid surfaces is violated.

2.2. Snow Gliding
Even though the bigger picture remains elusive, field observations from the 1920s onward have shown that
gliding is mostly observed under very specific conditions [in der Gand and Zupančič, 1965; Frutiger and Kuster,
1967; McClung, 1975; Mellor, 1978; Endo, 1984; Lackinger, 1986; McClung and Clarke, 1987; McClung et al., 1994;
Clarke and McClung, 1999; Newesely et al., 2000; Leitinger et al., 2008; Höller et al., 2009; Stimberis and Rubin,
2011; Peitzsch et al., 2012; Mitterer and Schweizer, 2012; Dreier et al., 2013; Viglietti et al., 2013; Peitzsch et al.,
2014; Feistl et al., 2014; Meusburger et al., 2014]: (i) slope angle must be sufficiently steep, typically greater than
28∘, but slopes as low as 15∘ have also been cited; (ii) ground must be sufficiently smooth and free of obsta-
cles, typically an open grassy slope or bare rock, but snow gliding is also observed under sparse forest cover;
(iii) free water must be present at the ground/snow interface, which implies that the ground temperature must
be 0∘C or higher; however, some studies have also pointed out that an isothermal snowpack (at 0∘C across its
entire depth) is a prerequisite, which greatly influences both the type of snow crystals (rounded grains) and
the stress distribution within the cover. Studies show the absence of correlation between daytime and night-
time rates of snow glide as well as the possible occurrence of significant gliding rates with cold temperatures
[Clarke and McClung, 1999].

Glide rates can be highly variable from one season to another, even at the same location. For instance, a
field survey conducted over 11 winter seasons above Amden (Switzerland), at 1540 m, showed that the
snow cover on a 40∘ slope traveled between 19 and 102 cm per season [Ammann, 2000; Margreth, 2007b];
the average glide rate was about 50 cm per season, i.e., a few millimeters per day. On some occasions,
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a complex combination of meteorological and snowpack conditions may lead to increased glide rates.
When this happens, rates of a few centimeters per day have frequently been observed [Clarke and McClung,
1999], but extreme values as much as 43 to 67 cm/h have also been reported [Margreth, 2007b; Stimberis and
Rubin, 2011; Caduff et al., 2015].

Snow gliding probably reflects the local interplay between the snowpack and ground, and so rates at specific
locations may vary significantly depending on topography. The differences in glide rates between areas of
snow cover close to one another may generate large tensile stresses within the snowpack, and once a critical
level of stress is reached, the snow cover develops a glide crack, i.e., a tensile fracture across the entire snow
depth. This explains why glide cracks are mostly observed at the same locations from one season to another.
Figure 1 shows glide cracks in Saint-François-Longchamp.

As pointed out by Clarke and McClung [1999], the rupture and release of the snowpack are more likely to be
consequences of increased glide rates than of a threshold glide rate (the latter process has been suggested
by in der Gand and Zupančič [1965]). The ground and crown surfaces are approximately perpendicular, which
is interpreted as the result of reduced bottom shear and increased tensile stresses in the cracking region
[McClung, 1986]. Viewed from above, glide cracks often form arc-shaped crevasses (called avalanche mouths),
which may extend over a few tens of meters.

2.3. Water Through Snow
Snow is an unsaturated porous medium [Denoth, 1982; Colbeck, 1986; Brun, 1989; Marsh, 1991, 2005]. Dry
snow is a two-phase material (air and ice), whereas for wet snow, there is also liquid water occupying part
of the interstitial space. The amount of water available in the liquid state is usually expressed as the liquid
water content W = Vw∕V , which is the volume occupied by liquid water Vw relative to the total volume V ,
and the liquid saturation Sw = W∕𝜙s, where 𝜙s denotes snow porosity (the fraction of void space in the snow
volume). In porous media composed of a granular skeleton, such as snow, how liquid water is distributed
within the pores depends primarily not only on the liquid saturation but also on the shape of the grains
[Szymkiewicz, 2013].

When liquid saturation is very low (usually Sw < 3% for old snow), liquid water concentrates in the acute
corners of the pores. It forms rings (capillary bridges) around the contact points between grains. It may also
form films covering the grains’ surfaces. The solid-ice skeleton is thus characterized by clusters of ice grains
held together by capillary forces (the liquid bonds undergo melt-freeze cycles under certain conditions of
heat flux). Surface tension is sufficiently large for this liquid water to be held in place. Air flow occurs in a
continuous path through the snow. When more water is added (as a result of either rainfall or snow melt), the
water films surrounding the grains coalesce, forming a continuous, thicker film that slowly drains away under
the effect of gravity. This situation, characterized by low to moderate liquid saturation (Sw <11–14%), is called
the pendular regime and corresponds to freely draining snowpacks; the water that is free to flow through the
pores is called free water. In terms of liquid water content, this occurs when W is in the 3%–7% range.

When the liquid saturation is high (usually when Sw > 14% for old snow), the ice grains are completely sur-
rounded by water, whereas the air is trapped in bubbles within the pores. Saturation of the pore space occurs
where there is a low-permeability boundary, such as the ground or an ice crust buried in the snow. This stage
is called the funicular regime. As snow covers are heterogeneous (as a result of stratification, spatial variability
in snow permeability, etc.), the funicular regime leads to free water following preferential flow paths [Colbeck,
1974a; Marsh, 2005; Techel and Pielmeier, 2011; Walter et al., 2013].

2.4. Glide Avalanche Initiation
A glide crack can cause a glide avalanche to occur. Initially, a glide avalanche is a full-depth avalanche,
i.e., a snow slab that slips along the ground (see Figure 1). For a glide avalanche to occur, the base of the snow-
pack must be wet. Its snow contains sufficiently high liquid water content (up to 3–7%) for free water to be
able to percolate down to the lowermost layers of the snow cover [McClung and Schaerer, 1993]. The upper
part of the snow cover is mostly wet but sometimes can be composed of dry snow (e.g., new snow).

Once a glide crack has developed and formed the crown of the slab, the strength of its lower bound (called
the stauchwall) can play an important part in the probability of release [Lackinger, 1986; Bartelt et al., 2012].
The lag time between crack initiation and slab release ranges from a few hours to a few weeks. It seems to be
highly correlated with air temperature and the degree of snowpack settlement [Reardon et al., 2006; Peitzsch
et al., 2012; Dreier et al., 2013]. In his field survey above Innsbruck, Lackinger [1986, 1988] pointed out that
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Figure 3. Fracture lines. (a) Wet-slab avalanche (Valcenis, France, April 2009). The fracture thickness was about 1 m on average. The avalanche brought down
200,000 m3 of snow. (b) Loose-snow avalanche (Grand Roc Noir, France, March 2005) initiating at one point. Note the typical triangular shape of the flanks. This
avalanche brought down less than 100 m3 of snow.

many glide avalanches occurred in the late afternoon and overnight, which implies that refreezing may lead
to stress redistribution within the snowpack and a change in the circulation of free water. Clarke and McClung
[1999] also observed the occurrence of glide avalanches with cold temperature.

2.5. Glide Avalanche Motion
After release, glide avalanches behave like wet-snow avalanches. Wet-snow avalanches form a class of
avalanches, all of which result from the release of either a wet slab (i.e., the snowpack is wet across its entire
depth) or a loose wet-snow volume, which initiates at one specific point and grows larger as it goes down-
hill [McClung and Schaerer, 1993]. Figure 3a shows a typical wet-slab avalanche, whereas Figure 3b presents
a loose wet-snow avalanche. In both cases, the liquid water content is sufficiently high (>3%) and snow tem-
perature is 0∘C [Techel and Pielmeier, 2011; Mitterer, 2012]. This small amount of liquid water is sufficient to
cause significant changes in the snow’s composition (e.g., formation of snowballs) and rheological behavior
(usually characterized by higher-energy dissipation rates) [Steinkogler et al., 2014]. Figure 4 shows two typical
examples of wet-snow avalanche deposits: during its course, the avalanche causes snow to compact and form
rounded snowballs, the size distribution of which depends on the liquid water content, snow temperature,
and duration of the flow (see Figure 4a). When the liquid water content is very high (> 8%), snow deposits are
often very compact, with densities as high as 550 kg m−3 (see Figure 4b). The velocity reached by wet-snow
avalanches on mild slopes is usually low, with a typical magnitude of about 1 m s−1 (by comparison, extreme
snow gliding rates are close to 2 mm s−1 while dry-snow avalanches reach much higher velocities, usually
higher than 10 m s−1).

Glide avalanches are mostly composed of wet snowpacks, but on occasion the upper part of the snow cover
can be composed of dry snow. In such cases, when the snow cover breaks, the layers start to slide downhill
in the form of a cohesive slab, but this quickly smashes into thousands of chunks which form wet snow as

Figure 4. Snow deposits from wet avalanches. (a) Rounded snow balls (Col du Jorat, Switzerland, February 2011);
the typical diameter of snow granules was 20 cm. (b) Compact wet-snow deposit covered with debris (Col Champion,
Switzerland, May 2013); the deposit thickness was 1.5 m on average.
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Figure 5. Paths of wet-snow avalanches. (a) The avalanche was confined between lateral levees created by the front (Cheval Blanc, Switzerland, May 2013); the
levee height was about 1 m. (b) The avalanche gouged down into the snowpack and also formed lateral levees (Grammont, Switzerland, December 2008); the
scouring depth was 30–50 cm.

they mix. For this reason, even if the mechanisms of release differ between glide avalanches and genuine wet
avalanches, their flow behavior is the same owing to the internal mixing which they undergo.

Glide avalanches may drag along the entire snow cover—sometimes causing soil erosion as they drag along
the superficial soil layer [Meusburger et al., 2014]—or slip on top of another snow layer. Like other forms of
wet-snow avalanche, they usually experience higher flow resistances than dry-snow avalanches. This explains
why, on most occasions, they run shorter distances and reach lower velocities than high-speed dry-snow
avalanches. However, on occasion, they can travel as far as high-speed avalanches and flow down shallow
slopes. This scenario can be observed when their lateral spread is limited by terrain features or as the result
of levee formation. Indeed, in the former case, glide avalanches can dig out a channel through the snow
cover or follow an incision in the terrain (e.g., a gully, river bed, or a depression caused by torrential erosion)
(see Figure 5a). In the latter case, they can form lateral deposits (levees) that confine any ensuing flow. These
levees are formed by grain sorting (a process called particle size segregation): wet snow forms rounded snow-
balls of different sizes; the largest snowballs concentrate in the fast-moving upper layers (next to the free
surface of the avalanche) and are transported to the leading edge; from here they are pushed to the sides
by the core of the avalanche (made up of the finest snowballs), which creates static coarse-grained levees
(see Figure 5b). This self-organization has a great influence on the flow’s behavior as it reduces the dissipative
effects of frictional forces.

The traditional view is that most catastrophic avalanches follow the same basic principle: fresh snow accumu-
lates on a mountain slope until the gravitational force at the top of the slope exceeds the binding force holding
the snow together, resulting in the release of a snow slab. Catastrophic avalanches are thus mostly associated
with dry snow, heavy snowfall, and high speeds. There is, however, clear evidence from the field that for cer-
tain sites, wet-snow avalanches are the major threat. Typical examples include the Saint-Clément avalanches
at Tours-en-Savoie (France), where avalanches traveled long distances down shallow slopes (<10%) and
deposited large accumulations of wet snow (exceeding 106 m3) on the valley floor [Gex, 1923; Ancey, 2012a]. If
a generalized Coulomb friction model, such as the Voellmy model, is used to compute that avalanche’s runout
distance, the friction parameter 𝜇 would have to have been as low as 0.08; however, Salm et al. [1990] give
0.155 as the minimum friction value for extreme avalanches. This behavior can be observed for both high-
and low-volume avalanches [Ancey and Meunier, 2004; Ancey, 2005].

2.6. Damage and Economic Costs
In terms of damage to dwellings and infrastructure (ski lifts and power lines), gliding snow and glide
avalanches are usually a minor threat relative to those caused by dry-snow and other forms of wet-snow
avalanches. Lackinger [1986] cited the Schmalzberg (Vorarlberg, Austria) avalanche of 31 December 1974,
with a death toll of 12 villagers. A survey of Swiss ski areas (with a total of 1800 ski lifts) between 1996 and
2007 documented three cases of damage to ski lifts [Margreth, 2007b], but in the winter of 2011–2012 alone,
there were 88 accidents due to glide avalanches in Switzerland [Techel et al., 2013]. That same winter, a tower
supporting a chairlift at Lungern-Schönbüel was tipped over by gliding snow in late January, while a glide
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Figure 6. (a) Slab geometry considered by Haefeli and subsequent authors: a slab of uniform depth h and length L is
resting on sloping ground. (b) In Lackinger’s model, there are patches of length 𝓁, whose basal resistance is significantly
reduced by water under pressure.

avalanche damaged a ski lift in Ovronnaz in late February. In France, with a total of 3400 ski lifts, the survey
we conducted in spring 2013, questioning the main infrastructure managers, reported six accidents due to
snow gliding in the last 20 years: Avoriaz (spring 1995), Foux d’Allox (February 1997), Morillon (May 2000), Con-
tamines (spring 2012), Cauterets (February 2013), and Luz-Ardiden (February 2013). Two other accidents due
to glide avalanches are also known: in the evening of 21 March 1971, a glide avalanche damaged five build-
ings at La Grave (Chazelet) without causing any injuries (occupants had time to evacuate their houses as snow
penetrated windows and doors) [Ancey, 1996], and the 2 March 2012, avalanche in Saint-François-Longchamp,
as described in this paper (the same chairlift experienced another accident on 9 March 2014).

In mountainous regions, repeated damage to forests, defense structures in starting zones, roads, equipment,
and buildings represent nonnegligible financial costs to landowners, ski resorts, municipalities, and compa-
nies. However, they remain difficult to quantify in money terms except in certain Swiss cantons where one can
draw on centralized data from public building insurance companies. The costs incurred by insurance compa-
nies due to the damage sustained in those cantons in the winter of 2011–2012 were estimated at 20 million
Swiss Francs (for the disastrous winter of 1998–2099 costs amounted to about 100 million).

3. Glide Avalanche Initiation

Decades of observations have formed the dominant view that glide avalanches result from a significant drop
in basal friction induced by free water within isothermal snowpacks [Höller, 2012]. However, there is a lack of
understanding on the exact mechanism whereby water “lubricates” the interface between the sliding snow-
pack and ground. To date, the analysis of the release of glide avalanches has mostly concerned the simplest
case (see Figure 6a): a snow cover of uniform depth h extends to infinity, both laterally and in the downward
direction, over a terrain inclined at an angle 𝜃. If there is a significant decrease in the bottom shear stress 𝜏b

over a sufficiently long distance L, then the reduction of basal friction is counterbalanced by an increase in
tensile stresses, which may lead to the initiation of the glide crack. Release and subsequent motion of the slab
still require low basal friction. So the crux of the problem is the proper determination of what happens at the
interface between the snowpack and ground.

3.1. Mechanisms of Incipient Motion: Physical Considerations
Let us consider a uniform layer of a material (be it solid or fluid) initially at rest on a sloping bed. For a sta-
tionary, uniform layer, the stress distribution is given as 𝜏b = 𝜌gh sin 𝜃 and 𝜎b = −𝜌gh cos 𝜃, where 𝜌 denotes
the bulk density, g is the gravitational acceleration, h is the layer’s thickness, and 𝜃 is the bed inclination (see
Figure 6a). Under certain circumstances, this layer starts slipping or flowing downward as a result of gravita-
tional forces. This is a classic geomechanical and geomorphological problem in the study of slope stability
and intermittent motion; it helps us to understand the basic mechanisms of flow initiation and propagation
for landslides, debris flows, submarine avalanches, glaciers, and avalanches. Various approaches have been
developed depending on (i) whether the material is seen as homogeneous or heterogeneous (e.g., a saturated
granular material) and (ii) whether the bulk material behaves as a fluid or as a solid.

Usually, most homogeneous fluids satisfy the no-slip condition at the bottom, but even in the comfortable
environment of the laboratory, the specific interactions between a material and a solid boundary remain
poorly understood and a matter of fierce debate; this is especially true for non-Newtonian fluids [Barnes, 1995].
For many fluids, high-resolution experiments have shown that the no-slip condition can be violated at the
microscopic level, although it successfully expresses flow behavior near the boundary at the macroscopic
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scale [Neto et al., 2005]. Several mechanisms (e.g., strong physicochemical fluid-solid interactions, nanobub-
bles, or shark skin effects) have been proposed in attempts to elucidate the appearance of wall slip in simple
fluids [Sochi, 2011], but they concerned industrial fluids rather than natural materials. Slip may occur also
within yield stress fluids: when the shear stress exceeds a critical value called the yield stress 𝜏c, the material
starts flowing along the yield surface y = h − 𝜏c∕(𝜌g sin 𝜃) [Barnes, 1999]. Yield stress fluids have long been
used to model natural materials such as debris mixtures and snow [Johnson, 1970; Ancey, 2007]. However,
this ideal situation poses theoretical problems for the slope stability problem addressed here [Thual and
Lacaze, 2010], and its suitability as a rheological model for debris flows has been questioned [Iverson, 1997].
This model’s major deficiency is the absence of general mechanism to explain how a stable layer of material
becomes unstable or, to put it differently, why the yield stress decays sufficiently for the layer to yield. One
possible mechanism to explain slope failure is the dissolution of the clay bonds linking coarse particles [Bardou
et al., 2007]; however, this is very specific to materials with a sufficient clay content.

The current trend in geophysical fluid dynamics is to regard natural materials as two-phase materials,
i.e., heterogeneous granular mixtures, whether or not they are fully saturated by an interstitial fluid [Iverson
and Vallance, 2001]. The simplest model (borrowed from geomechanics) is that of a saturated frictional
Coulomb. The bottom shear stress is then expressed as a function of the bottom normal stress 𝜎b

and pore pressure p (see Figure 6a): 𝜏b = 𝜇(𝜎b − p) where 𝜇 denotes the Coulomb friction coefficient. Pore
pressure may increase (e.g., as a result of rain or snowmelt infiltration) causing the shear stress
to decay and the layer to slip along its base. More elaborate models have introduced additional
mechanisms—such as dilatancy (the expansion of the pores under the effect of shear), pore pres-
sure diffusion, and rate-dependent friction 𝜇—for providing more realistic descriptions of slope fail-
ure and flow propagation [Iverson, 2005; Cassar et al., 2005; Schaeffer and Iverson, 2008; Pailha et al.,
2008; Louge et al., 2011]. For certain saturated materials (e.g., when the fluid density matches that of
the particles), granular materials can be considered suspensions of neutrally buoyant particles. Dilatancy
and particle migration (depletion) away from the bed can combine to create a thin, fluid basal layer
that lubricates the layer above and allows it to slip along the sloping bed. This lubrication process,
sometimes referred to as hydroplanning, has been proposed as an explanation for the high mobility of subma-
rine avalanches [Elverhøi et al., 2005; De Blasio, 2011] and certain subaerial flows [Legros, 2002]; it is consistent
with rheometric observations of model suspensions in the laboratory [Barnes, 1995; Sochi, 2011]. The main
unknown factor in this approach concerns the mechanism that initiates particle depletion away from the
sloping bed if the material is initially at rest.

Another approach is to consider the layer as one solid, rigid material. The simplest model is the sliding block
model, in which the bottom shear stress 𝜏b is linked to the normal stress 𝜎b through a bed friction coefficient
𝜇: 𝜏b = 𝜇𝜎b. Failure occurs if 𝜇 > tan 𝜃. This model suffers from the same shortcomings as the saturated, fric-
tional Coulomb model (see above): in the absence of a mechanism describing the reduction in the friction
coefficient 𝜇, it is not very helpful. For viscous fluids, lubrication theory shows that a rigid slab can slip along
a solid boundary if there is a thin layer of liquid under pressure between them [Batchelor, 1967]. Glaciolog-
ical studies have identified at least two sliding mechanisms for glaciers which explain how liquid water can
appear underneath the glacier sole [Cuffey and Paterson, 2010]: (i) the partial separation of the glacier base
from the ground and (ii) regelation (pressure melting). In the former process, ground roughness and undu-
lations are assumed to promote clearance between the gliding rigid snowpack and ground downhill of each
bump. The resulting local cavities are filled with water, thus reducing basal friction [Nye, 1969]. In the latter
process, the stoss sides of bumps experience higher pressure than the lee sides and locally basal temperatures
reach melting point [Weertman, 1979].

All of these studies have been sources of inspiration for modeling gliding snow. In the following section, we
will examine how these approaches have shed light on the mechanisms governing gliding snow. Although
there is currently no consensus on the actual sliding mechanism, the most reasonable explanation lies in the
role played by a lubrication layer and excess pore pressure at the snowpack base (see sections 3.3 and 3.4),
an explanation that comes from investigations into glacier sliding and debris flow initiation. Two caveats are
in order: even today, it is unclear how insightful any analogy between glaciers, debris layers, and seasonal
snowpacks actually is; furthermore, glacier sliding and debris flows still stimulate vibrant debate even though
they have been extensively studied over the last 50 years [Fowler, 2010; Iverson, 2003].
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Figure 7. Sketch of a lubricating water layer within the snowpack:
a thin film of water exists between the frozen ground and the base of
the snow cover. The base of the snowpack is water saturated, but in
the upper layer, a pendular regime takes place, in which free water
percolates down to the bottom.

3.2. Earlier Work: Sliding Block Models
Haefeli [1939] performed sliding block
experiments using snow samples on an
inclined glass plate. He observed a signif-
icant drop in 𝜏b with air temperature as
well as a nontrivial dependence of 𝜇 on
𝜎b, snow temperature, and block velocity.
Theoretical considerations led Moskalev
[1967] to suggest a linear decrease of 𝜇 as
the thickness of the water-saturated layer
at the base of the snow cover increases.
The main shortcoming of this approach
is that by focusing on the tribological
characterization of 𝜇, it provides general
results which hold true for all slopes; how-
ever, glide avalanches occur under very
specific conditions.

Taking the heterogeneous nature of bed
contact into account, in der Gand and

Zupančič [1965] assumed that there are wet patches at the base of the snow cover where higher liquid water
contents are concentrated. In these patches, dry friction is replaced by a viscous boundary layer of thickness
𝛿. They assumed that the resulting mean bottom shear stress is merely the sum of the viscous and Coulombic
frictional contributions:

𝜏b = 𝜇𝜎b +
𝜂

𝛿
ug, (1)

where 𝜂 is the snow viscosity within the boundary layer and ug the gliding velocity. Note that this decompo-
sition is incorrect because if the ground surface is broken into wet and dry areas, then each contribution on
the right-hand side of equation (1) has to be weighted by a coefficient reflecting the ratio of these areas to the
total surface. Equation (1) leads to a gliding velocity ug = 𝜌gh cos 𝜃(tan 𝜃 − 𝜇)𝛿∕𝜂. From observed values of 𝛿
and gliding rates, in der Gand and Zupančič [1965] found that depending on the (unknown) value of 𝜇, snow
viscosity 𝜂 should range from 104 to 107 Pa s in accordance with other findings [Haefeli, 1948; Salm, 1967a;
Shapiro et al., 1997]. These values, which are 107 to 1010 higher than water viscosity, confirm that there is some-
thing amiss with this analysis or at least inconsistent with what we know about the viscosity of concentrated
suspensions [Zarraga et al., 2000].

Figure 8. Field evidence of separation between the snowpack and ground: (a) undulating snow cover at Saint-François-Longchamp and (b) uplift of the slab near
the damaged tower at Cauterets.
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Figure 9. Typical example of a wet patch: locally, the ground surface
has been leached, whereas in the surrounding area, the grassy surface
is intact.

3.3. Water Layer Under Pressure
Lackinger [1986, 1988] elaborated on
this approach by considering that wet
patches result from the trapping of free
water between the base of the snow cover
and the ground, a process he referred to
as “damming.” He was not very explicit
about the precise mechanism giving rise
to this trapped water. However, let us
assume that a thin layer of liquid water
is trapped upstream of an obstacle, at
the interface between the snowpack and
ground over a length 𝓁 (see Figure 6b),
and that the base of the snowpack is suffi-
ciently impervious for the pressure within
the layer to be hydrostatic; then, the mean

normal component of the pressure force per unit width is Fp = 1
2
𝜌wg𝓁2 sin2 𝜃. This pressure force

counterbalances the normal component of the snowpack weight Fn = 𝓁𝜎b if

𝓁
h
= 2

𝜌

𝜌w

cos 𝜃

sin2 𝜃
, (2)

where 𝜌w denotes water density. Typically, for 𝜌∕𝜌w = 0.4 and 𝜃 = 45∘, we find 𝓁∕h ≈ 1, which is a reason-
able value for the patch length (relative to the snow depth). Note that Lackinger [1986] used a stability index
and additional contributions to maintain equilibrium (cohesion and Coulomb friction), but the order of mag-
nitude of the 𝓁∕h ratio is the same. An interesting feature of equation (2) is that the 𝓁∕h ratio decreases with
increasing bed inclination, which may explain why glide avalanches, although usually requiring slopes of a
sufficient inclination, can on rarer occasions be observed on gentle slopes: for 𝜌∕𝜌w = 0.4 and 𝜃 = 15∘, we
find 𝓁∕h ≈ 12.

The cornerstone of this approach is the development of layers of water under pressure. Lackinger [1986]
mentioned that an ice layer of a few centimeters in thickness is often observed at the base of snow cover
and can be considered an impermeable boundary. Ice layers were observed at the base of the snowpack in
both Saint-François-Longchamp and Cauterets (see the supporting information). Key questions concern the
mechanisms by which an ice lens can be impermeable and how it is pushed up to allow the development
of a lubricating layer of water, as sketched in Figure 7. One possible mechanism is evoked by Endo [1984]:
snow cover gliding over undulating terrain may lead to partial separation when bumps lift up a sufficiently
rigid snowpack base. In different places near the starting zone in Saint-François-Longchamp and in the snow
deposit of Cauterets, the snow cover had been lifted up locally by natural obstacles, as shown in Figure 8. In
the former case, snowpack uplift was observed from the outset of the ski season, demonstrating that snow
gliding rates were high in the early season, but did not lead to avalanche release. In the latter case, the uplift
occurred concomitantly with the toppling of the chairlift tower and, therefore, was more likely to have been
the consequence of snow gliding than its cause.

Another mechanism is related to frost heave, whose effects are especially marked for silt-grained soils
[Matsuoka, 1998; Dash et al., 2006; Matsuoka, 2005; Matsumoto et al., 2010]: the formation of ice lenses within
soils susceptible to frost can cause a centimetric upward displacement of the ground interface and may lead
to a rapid separation of the snowpack from the ground (typically within 1 day). On alpine slopes, diurnal heave
can range from a few millimeters to 3 cm. Frost heaves usually occur early in the season, before the formation
of a deep snow cover, but they can also occur when snow meltwater infiltrates the soil and refreezes. Note
that thawing may also cause a sudden downward displacement of the ground surface, thus partial separation
of the snowpack from the underlying ground [Matsuoka, 2005].

A closer examination of the starting zone in Saint-François-Longchamp showed that the ground surface was
mostly covered with flattened grass (with no signs of strong friction, such as soil abrasion and uprooted veg-
etation), but as shown in Figure 9, there were also patches (typically of a few square meters) where grass was
partly covered by mud deposits. These patches may be the remnants of the layer of water under pressure.
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The second question involves the permeability of basal ice layers. As ice is a porous medium, one possible
explanation is that surface tension at the interface between the saturated basal layer and the unsaturated
snowpack (see Figure 7) impedes the upward motion of water while allowing the downward drainage of free
water in a pendular regime. The pressure difference at this interface is given by the Laplace law:

Δp = 2
𝛾

r
, (3)

where 𝛾 denotes the air/water surface tension and r is the typical radius of curvature of the menisci, which
is of the same order of magnitude as the mean distance 𝛿 between two ice crystals of diameter d: 𝛿 = d
(1 − 3

√
c∕cm), where c is the ice volume concentration and cm = 0.92 is the maximum concentration.

Typically, for snows of density 600 kg m−3 (c=0.6) and crystal diameters d=1 mm, one finds 𝛿 = 0.1 mm and
Δp = 1.1 kPa. Laboratory experiments with dense snow samples (density ranging from 550 to 590 kg m−3) in a
pendular regime have given pressure jumpsΔp as large as 3.8 kPa [Colbeck, 1974b; Marsh, 2005]. These values
correspond to pressure heads hw = Δp∕(𝜌g) ranging from 10 cm to 40 cm, and so the lens length𝓁 = hw sin 𝜃

ranges from 15 cm to 60 cm for 𝜃 = 45∘. This is insufficient to support the normal load imposed by the snow-
pack weight. With permeability coefficients as large as 10−10 m2 [Jordan et al., 1999], the maximum pressure
gradient at the base of the snow cover does not exceed 8.5 kPa m−1 [Marsh, 2005]. If we use the example of
a 5 cm thick ice layer on top of a layer of water with a pressure head hw = 1 m (to support the snow load),
then the pressure gradient through the ice layer should reach 200 kPa m−1; this is 20 times greater than the
maximum value given by Marsh [2005].

To summarize, layers of water under pressure may exist at the base of the snow cover, but while they
can reduce bottom shear stress significantly, the level of pressure is not sufficient to cause a complete
collapse of basal shear strength. For instance, if we consider a 2 m thick snowpack with average density
𝜌 = 400 kg m−3 undermined by a layer of water subject to a pressure head hw = 40 cm, then the normal stress
is 𝜎b = 𝜌gh cos 𝜃 = 5.5 kPa and the effective normal stress 𝜎′

b = 𝜎b − p = 1.6 kPa, causing a 70% decrease in
bottom shear stress.

3.4. Water Pressure Diffusion
Another explanation, closely related to Lackinger’s theory, has been given by recent investigations into the
unsteady creep and slip of dilatant soil layers: as a result of grain rearrangement (dilation/contraction phases),
water pressure may be diffused through the pores of the saturated layer and alter shear strength significantly
[Iverson, 2005; Schaeffer and Iverson, 2008]. In this process, pressure diffusion results from the compressibil-
ity of the granular skeleton, not from water compressibility (which is tiny). Careful laboratory experiments
with highly concentrated, density-matched suspensions in inclined flumes have confirmed that fluid seepage
through a granular matrix at rest is sufficient to cause the water pressure to increase significantly [Andreini
et al., 2013]. When water pressure is sufficient to counterbalance the stress generated by the weight of the
granular matrix, the material slips along the flume bottom. Dilatancy within the basal layers leads to the diffu-
sion of water pressure and thus an increase in the bottom shear strength, with the consequence that sliding
rapidly comes to a halt. Another cycle of slippage may occur, depending on fluid seepage and material com-
paction. In contrast to Lackinger’s theory, there is no need for an ice layer on top of a layer of water under
pressure to create slip: it is the combination of fluid seepage, pore pressure diffusion, lubricated grain con-
tacts, and dilatancy that leads to significant fluctuations of basal shear strength over time. As pointed out by
McClung [1981], it is unlikely that water pressure alters the stress distribution in the absence of snow dilatancy
in the basal layers. However, there remains a question about the possibility of a dilatant behavior of snow
layers at the base of the snow cover, an issue that has not so far been documented, to the best of our knowl-
edge. To summarize, this similarity to landslides may provide some additional physical insights into the actual
mechanisms of snow sliding, but the basis for this similarity is still speculative.

3.5. Lubrication Layer
McClung [1980, 1986], McClung and Clarke [1987], and McClung et al. [1994] drew on the results obtained
by Weertman [1979] and Nye [1969] to identify two sliding mechanisms for snowpack: the two main effects
induced by free water are the reduction in snowpack viscosity and the partial separation of the snowpack base
from the ground. McClung [1980, 1981] deduced that the distribution of water-filled cavities is a function of
ground roughness, and by elaborating on Nye’s theory and assuming that snow behaves like a compressible
viscous fluid, he ended up with a linear basal friction law:

𝜏b = 𝜂

2(1 − 𝜈)
us

Dh
, (4)
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Figure 10. Slab geometry considered by Bartelt et al. [2012].

where 𝜂 denotes the shear viscos-
ity of snow, 𝜈 is a viscous analog
of the Poisson ratio (accounting for
snow compressibility), us represents
the slip velocity, and Dh is called the
stagnation depth, which is related to
the statistical distribution of ground
undulations. For single sinusoidal
wavelengths, Dh = 𝜆(𝜆∕a)2∕(8𝜋3),
where 𝜆 and a denote the wavelength
and amplitude of ground undulations,
respectively [McClung, 1981]. The lin-
ear viscous fluid assumption is a crude
one: for dense snow, rheometrical

tests exhibit a nonlinear viscoelastic behavior (shear thinning, with a shear thinning index close to 1/3, as in
Glen’s law used for ice) [Scapozza and Bartelt, 2003; Delmas, 2013]. However, several experiments have tried
to estimate bulk shear viscosity: it has usually been found that snow viscosity varies by several orders of
magnitude as a function of temperature, density, and liquid water content: 𝜂 ranges from 106 Pa s to 1012 Pa s
[Haefeli, 1948; Bucher, 1948; Salm, 1967a; Haefeli, 1967; Salm, 1982; Shapiro et al., 1997; Teufelsbauer, 2011];
the typical values for snow at T = 0∘C with 𝜌 = 400 kg m−3 are 𝜂 ∼ 5 × 1010 Pa s and 𝜈 ∼ 0.2 [Shinojima,
1967; Shapiro et al., 1997]. If we again consider a 2 m thick snowpack (with average density 𝜌 = 400 kg m−3)
on bumpy sloping ground (a = 10 cm, 𝜆 = 10 m, and 𝜃 = 45∘), then the sliding velocity us calculated from
equation (4) ranges from 1.2 cm h−1 to 3.6 m s−1. Conversely, the typical slip velocity us ∼ 10 cm h−1 observed
prior to avalanche release is obtained by using a shear viscosity 𝜂 ∼ 109 Pa s. From this perspective, although
poorly constrained, the numerical estimates provided by equation (4) seem realistic.

In contrast with Lackinger’s theory, McClung [1981] and McClung and Clarke [1987] assumed that the water
pressure was hydrostatic and emphasized that free water created cavities along the ground, lubricated
contact between the ground and the base of the snow cover and/or softened the basal layer. Although
the significant permeability of snow justified dismissing the water pressurization effect, this assump-
tion conflicts with lubrication theory: for a Newtonian fluid to lubricate two adjacent mobile interfaces,
fluid pressure has to increase to support the weight of the upper interface. In particular, for glaciers,
subglacial water pressure has been long identified as the key to explaining glacier sliding [Cuffey and
Paterson, 2010]. The only possibility is thus snow softening induced by a reduction of snow viscosity in the
basal layers when the liquid water content is increased.

3.6. Role of the Downstream Boundary Condition
Recently, new theories have emerged to explain the release of glide avalanches; they emphasize the time
evolution of the phenomenon rather than focus on the statics of stationary snow cover. The idea that the
time dependence of basal resistance is a key factor in glide avalanche release is not new [Nohguchi, 1989],

Figure 11. View of the transition area between the starting zone and
the deposit at Saint-François-Longchamp (photograph taken on 4
March 2012).

but it was not until very recently that a
broader physical picture was proposed by
Bartelt et al. [2012]. These authors consid-
ered a slab of length L (see Figure 10).
Over a short length 𝓁, there is a collapse
of bottom shear resistance, which ends
static equilibrium. In the ensuing stress
redistribution, a part of the frictional force
is taken up by an increase in the tensile
stress in the downhill direction (denoted
by 𝜎x). A glide (tensile) crack develops,
forming the upper boundary of the slab.
The stauchwall experiences a gradual
increase in compressive stress. Assuming
a viscoelastic behavior for snow, Bartelt
et al. [2012] ended up with a second-order
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differential equation for 𝜎x , whose phase
portrait showed the existence of a focus
point. In practice, this means that once
destabilized, the slab always reaches a
new equilibrium at “large” times (com-
pared to the time associated with elas-
tic wave propagation), but this path to
equilibrium may be characterized by wide
fluctuations in axial strain rates. If these
strain rates exceed a critical value, then
the stauchwall fails (brittle compressive
failure) and the avalanche is released.Figure 12. Definition of the neutral and compression zones.

Although this model provides a com-
pelling description of the release process, quantification is a delicate issue in the absence of rheometrical
measurements of snow properties. Furthermore, it is often difficult to locate the position of the stauchwall.
As shown in Figure 11 for Saint-François-Longchamp, if any stauchwall existed, it was destroyed by the sub-
sequent avalanche. In the same picture, a transition zone is seen at the foot of the starting zone (at 2010 m
above sea level, slope 22∘): there was a gradual change in the avalanche path roughness over a 20 m length.
In the starting zone, the avalanche slid over grassy ground, whereas in the lower part of its path it eroded the
snow cover and thus slid on a snow interface. In Cauterets, no stauchwall was observed, but the snow cover
there was the result of a superimposition of avalanche deposits.

4. Force Due To Gliding Snow

Modeling capabilities have dramatically improved since the first analytical calculations performed by Haefeli
[1939] and even since more recent finite-element simulations of snowpack changes [Bader et al., 1988;
Kleemayr, 2004; Nicot, 2004; Teufelsbauer, 2011]. Yet the ability to accurately explain the interaction between
a gliding snowpack and an obstacle still remains some way off.

For many years, in the absence of powerful computational resources, scientists working in snow science
could only investigate simplified problems and geometries. In practice, this meant that they had to solve
one-dimensional flow problems using simple constitutive equations about snow behavior and an idealized
description of the interaction between snow and obstacles. Even today, with the assistance of powerful com-
puters and numerical techniques, the overall problem remains very difficult due to the fact that snowpacks
exhibit considerable spatial variability in terms of their mechanical properties and composition, depth, etc.
[Schweizer et al., 2008].

A further issue is that part of the accumulated knowledge on avalanches has been transcribed into the form
of guidelines and has thus become somewhat intellectually “frozen.” From the initial publication in 1952 to
the latest update [Margreth, 2007a], the Swiss guidelines have always been based on more than a theoretical
analysis of the interaction between creeping/gliding snowpacks and obstacles—they have also been based
on practical tests and field surveys. They have slowly evolved in parallel with new findings and the experience
gained from building kilometers of protection barriers. They have been criticized on several occasions because
they are based on oversimplified assumptions of the actual rheological behavior of snow [McClung, 1993]
and because, in some regions, they fail to provide correct approximations of snow forces [Larsen et al., 1989;
Katakawa et al., 1992; Shapiro et al., 1997; Rudolf-Miklau and Sauermoser, 2011; Harada et al., 2014].

Below, we focus on the calculation of the forces exerted by snow cover of depth h on an infinitely wide
frictionless wall normal to the slope bed (see Figure 12); this is the standard configuration used in most
papers. The following sections summarize the main results, whereas Appendices A–C give further informa-
tion about the derivation of the forces. The problem of a finite-size obstacle such as a tower is discussed in
Appendix D. The models presented in this section are then compared with the data obtained for the Cauterets
and Saint-François-Longchamp avalanches in section 6.

4.1. Haefeli’s Approach
Even though Haefeli’s work has been revisited and updated, the series of seminal papers written by Haefeli
[1939, 1942, 1944, 1948, 1951] around 70 years ago is still viewed as the cornerstone of the Swiss guidelines
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[Margreth, 2007a]. Due to their importance in the development of concepts still in use today, his main findings
are summarized and contextualized with respect to current knowledge in Appendix A.

Haefeli considered an infinitely long uniform snowpack. The wall induces a stress and strain redistribution
over a distance𝓁c in a zone referred to as the compression zone. He assumed that the flow was perfectly plastic
and coaxial. In other words, the snow undergoes irreversible strains without any increase in stresses, and the
directions of the principal stresses and strains are coincident [Davis and Sevladurai, 2002]. With regard to the
kinematic conditions, Haefeli assumed that the velocity profile in the far field, referred to as the neutral zone,
was known and linear, with a slip velocity denoted by ug. As the snowpack thickness is uniform, the shear and
y normal stresses are known in advance. The wall produces a gradual deceleration of the snowpack, and thus,
the force exerted by the snowpack on the wall comprises a static component (representing the plastic force
in the absence of any obstacle) and a dynamic component (which results from the deceleration of snow within
the compression zone), which can be seen as a corrective term to the static contribution. Reasoning with the
help of Mohr’s circles, Haefeli deduced the stress distribution within the compression zone.

In the end, Haefeli found that the total force is the sum of the static and gliding contributions:

F = 1
2
𝜌gH2

(
cos3 𝜃(1 − 2 tan 𝛽45) + KhN

)
, (5)

where H = h∕ cos 𝜃 is the snow depth measured vertically, Kh is Haefeli’s creep factor, N is Haefeli’s gliding
factor, and 𝛽45 is the creep angle for a 45∘ slope (see Appendix A for the expressions of these coefficients).
Haefeli’s work has been revisited, but the structure of the final equation (5) has remained the same.

A modern interpretation of Haefeli’s work raises a number of issues regarding the consistency of his treatment
of the physical world. Haefeli introduced significant limitations by considerably simplifying physical represen-
tations of the real world, such as the one-dimensional nature of the problem (he did not consider a gradient
in the x direction). This is, however, a strength rather than a weakness, in that it allows the main physical effect
brought out in the analysis to emerge in its simplest form. Other assumptions have been more criticized.
Haefeli did not consider the conservation of mass and momentum but rather assumed a velocity distribution.
The only explicit hypothesis involving the rheology of snow was that it behaved like a purely plastic material,
and he implicitly used the principle of coaxiality. A closer inspection of Mohr’s circles, looking for stresses,
shows that snow should behave like a noncohesive material, with an internal friction angle𝜑 that depends on
both the creep angle 𝛽 and ground inclination 𝜃; therefore, 𝜑 cannot be a constitutive parameter as required
by plasticity theory (see Appendix A). This also conflicts with the concept of perfect plasticity used by Haefeli,
which should mean that snow behaves like a cohesive frictionless material. Furthermore, the velocity field
introduced by Haefeli is not consistent with an associated flow rule introduced by the coaxility principle
(see Appendix A).

In Haefeli’s defense, we can point out that although the concept of yield surface was established in the 1940s,
plastic theory was still in a developmental phase. The concept of plastic flow dates back to contributions
by von Mises and Hencky in the 1920s; Hill’s theory, together with Drucker and Prager’s work on plasticity,
was published in the 1950s, and theoretical insights into the coupling between dilatancy and friction came
from the Cambridge school (Roscoe, Schofield, Wroth) and from Rowe in the 1960s. Compared to the models
developed by Campell, Pollack, and Mougin based on a static equilibrium of the snow volume retained by the
wall [Bucher, 1948; Roch, 1955], Haefeli’s work was clearly a breakthrough, even though subsequent findings
in the field of plasticity have revealed some inconsistencies in his treatment of the stress distribution.

4.2. Bucher’s Model
Bucher reformulated Haefeli’s model so that snow was regarded as a compressible viscous fluid rather than
a plastic material (see Appendix B). By introducing a Newtonian constitutive equation, instead of assuming
the velocity, Bucher [1948] determined it from the momentum balance equation. To that end, he assumed
that the classic no-slip condition along the bottom holds true and the static pressure term is negligible. He
was then able to find an approximate solution to the velocity field in the compression zone. He considered
that the total force exerted on the wall results from the viscous normal stress applied to it. There is no static
component in his calculation.

Bucher [1948] found that the total normal force exerted on the wall (per unit width) is

Fg = −∫
h

0
𝜎x(0, y)dy =

𝜌gh2 sin 𝜃√
2(1 − 𝜈)

, (6)
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Figure 13. Variation of the scaled force F̃ = F∕
(

1
2
𝜌gH2

)
as a function of the velocity ratio n (n = (N2 − 1)∕3; see

equation (A1)) for a slope 𝜃 = 45∘ , with 𝜌 = 400 kg m−3 (𝜈 = 0.258). The solid line represents McClung’s model (7), while
the dashed line shows the scaled force computed using Swiss guidelines (9).

where 𝜈 denotes the Poisson ratio (the transverse-to-axial-strain ratio in elasticity). Although the structure of
Bucher’s equation (6) differs from Haefeli’s gliding force (A7), their ratio gives 3 sin(2𝜃)∕

√
32(1 − 2𝜈) ∼ 0.9 for

𝜃 = 𝜋∕4 and 𝜈 = 1∕3. We conclude that in the absence of gliding, Haefeli’s and Bucher’s models are consistent
with each other in spite of the significant differences in approach. Salm [1977] mentioned that some work
had been done to extend Bucher’s theory to gliding snowpacks, which resulted in an empirical expression in
which the actual snow depth was replaced by a fictitious depth.

The absence of a static pressure term is uncertain as for compressible materials, we expect there to be a ther-
modynamic pressure that reflects the isotropic stress distribution in the absence of other strains. Another
pressure term resulting from bulk compressibility can be added to this static pressure [Chadwick, 1999].
Compressible viscous fluids form the Reiner-Rivlin fluids, which are a generalization of the classic incom-
pressible Newtonian fluids [Coleman et al., 1966; Bowen, 1989]. In Bucher’s defense, we should point out that
Reiner-Rivlin fluid theory was only developed in the late 1940s, and it is likely that Bucher was unaware of
these developments in continuum mechanics.

4.3. McClung’s Approach
McClung [1982] used the same constitutive equation as Bucher [1948], i.e., a compressible viscous Newtonian
law. McClung thought that the assumption of no slip at the bottom of the snowpack was unrealistic, especially
for dealing with problems involving clear evidence of gliding snow; therefore, he explicitly assumed that the
snow cover was slipping along its bottom. As this assumption introduced a new unknown (the slip velocity),
McClung needed another assumption to close his system of governing equations. Like Haefeli, he assumed
that the velocity field was linear far upstream from the wall and did not satisfy the no-slip condition at the bot-
tom. Lastly, using the principle of momentum conservation for a control volume of length 𝓁c, he determined
the variation in the mean velocity and normal force with position (see Appendix C).

Like Haefeli, he considered that the total gliding force results from dynamic and static pressure terms:

Fg =
𝜌gh2 cos 𝜃

2

(
2𝜅 tan 𝜃 + 𝜈

1 − 𝜈

)
, (7)

with

𝜅 =
√

2
1 − 𝜈

D∗

h
=
√

12n + 3.24 + 𝜈

6(1 − 𝜈)
(8)

for a frictionless wall, where D∗ denotes a characteristic length (see Appendix C).

4.4. Summary
The Swiss guidelines express total force as

F = 1
2
𝜌gH2KN, (9)
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Figure 14. Variation of the ratio k = �̄�x∕�̄�y for McClung’s model (7).
The solid line represents the N = 1.14 (n = 0.1) case, while the
dashed line shows the N = 2.64 (n = 2) case. Computations made
for 𝜈 = 0.258.

where H = h∕ cos 𝜃 denotes snow height
measured vertically, N =

√
1 + 3n is Haefeli’s

gliding factor, and n is the velocity ratio given
by equation (A1) (see Appendix A for their
expression). In practice, N varies from 1.2
(rough slopes) to 3.2 (smooth slopes) [Mar-
greth, 2007a]. We have also introduced the
creep factor K . This can be related to Pois-
son’s ratio using equation (B8), as introduced
by Bucher [1948]; it has been calibrated from
laboratory data:

K = 2
3

cos 𝜃 sin 𝜃
√

2 cot 𝜃 cot 𝛽

= 2
3

sin(2𝜃)
√

1 − 𝜈

1 − 2𝜈

= sin(2𝜃)(2.5s3 − 1.86s2 + 1.06s + 0.54),
(10)

with s being the relative density of snow (to water). The static contribution—see equation (A6)—has been
neglected as it is usually much smaller than the contribution due to gliding [Haefeli, 1948]. McClung’s
equation (7) exhibits a similar structure, but with a greater dependence on 𝜃. The ratio of equations (7)–(9) is
approximately 3

2
cos2 𝜃. Figure 13 compares both models using a particular case (𝜃 = 45∘): other than the fact

that their amplitudes differ by a factor of 3, the models show a similar dependence on n. It may seem surprising
that Haefeli and McClung obtained similar results, although they were off by a multiplicative constant, since
both authors took radically different approaches. However, from a dimensional analysis standpoint, given
that they actually used the same variables, there was no real possibility that they could have arrived at very
different results.

It is also interesting to calculate the ratio k = �̄�x∕�̄�y . Indeed, from a mechanical point of view, there should not
be much difference between avalanche forces in the limit u → 0 (e.g., equation (15)) and the force exerted by
gliding snow cover. McClung’s model gives a stress ratio

k = 2𝜅 tan 𝜃 + 𝜈

1 − 𝜈
, (11)

where 𝜅(n, 𝜈) is given by equation (8). For slow wet-snow avalanches, field measurements show that much of
the shear is concentrated within a basal shear layer, while the upper layers exhibit low shear rates (typically
lower than 1 s−1) [Kern et al., 2009]. These observations lead us to choose low values of n to represent wet-snow
avalanches. Figure 14 shows the variation in stress ratio k for two values of n as a function of the slope: N = 1.1
(n = 0.1) and N = 2.6 (n = 2). Typically, k ranges from 2 to 4 for a 30∘ slope, which is consistent with the
empirical values discussed in section 5.2. According to the Swiss guidelines, however, k ranges from 4 to 8 for
𝜃 = 30∘.

5. Avalanche Forces

The difficulties involved in calculating the forces exerted by gliding or flowing snow are a long-standing issue
[Mougin, 1922; Lagotala, 1927; Haefeli, 1939]—far from solved even after nearly a century of investigation.
Examination of the technical literature may convince the reader that this is a confusing topic, full of conflicting
statements, misconceptions, a repetition of old (and sometimes discredited) ideas, and a lack of synthesis. This
comes as no surprise when even the basic terminology used to organize avalanche knowledge remains fuzzy.
This problem has been faced in other fields: it took more than 150 years before a rigorous analytical treatment
of viscous forces on moving bodies was proposed [Veysey and Goldenfeld, 2007]. For instance, it turns out
that the famous Stokes result (1851) for the drag force on a sphere as a function of the Reynolds number
was only correct by fortuitous accident. Resolving the experimental contradictions in the measurement of
drag forces also required considerable efforts lasting decades. With regards to snow, we can now more easily
understand why force calculation remains a vast fallow field of research; existing knowledge is a patchwork
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Figure 15. Volume of control surrounding a cylindrical obstacle of diameter d normal to the ground S0. The inflow
section is S1, while the outflow section is S2. S3 is the interface between the snowpack and the cylinder. Each control
surface is oriented by a normal vector n.

combining empirical evidence and theoretical results based on similarities with other fields of research. In
spite of the simplicity of the equations proposed in the various guidelines, their practical application to field
studies requires considerable experience in order to avoid errors [Roch, 1980; Burkard, 1992].

5.1. Inertia- and Gravity-Dominated Regimes
The dominant historical view has been that avalanches are high-speed flows and thus their interaction with
any obstacle produces forces that should depend on the kinetic energy of the flow [Mougin, 1922]. Yet surveys
of damage caused by avalanches to different objects (houses, trains, etc.) led Voellmy [1955a] to distinguish
between the forces due to an impact (which could be evaluated using a variant of the Bernoulli equation
for compressible fluids) and the forces due the slow thrust of snow, which are assumed to be “hydrostatic.”
Voellmy [1955b] then found that the upper boundary of the avalanche pressure is

pmax = 𝜌m(gh + u2), (12)

where 𝜌m is the snow density when encountering the obstacle, u is the (depth-averaged) velocity of the
avalanche upstream of the obstacle, while h denotes its flow depth. This equation is bounded by two limiting
cases: for high-speed avalanches, the maximum pressure is pmax = 𝜌mu2, while for low-speed avalanches, the
pressure scales as 𝜌mgh. Voellmy’s work initiated a host of publications on the calculation of avalanche forces,
mainly focusing on the different phases of the interaction between snow and obstacles [Salm, 1964; Grigorian,
1974], the size and geometry of those obstacles [Sommerhalder, 1966], etc. Recent surveys can be found in
Ancey [2006], Gauer and Jóhannesson [2009], Faug [2010], Bovet [2012], and Margreth et al. [2013]. Here we
focus on the limiting case of small velocity (typically a few m s−1) and small obstacles (typically a tower of
diameter d).

Voellmy and subsequent authors adopted the Bernoulli equation, but the Bernoulli theorem is not easily appli-
cable to compressible and highly dissipative fluids in complex time-dependent flows. A similar problem arises
in the calculation of the front position of an intruding gravity current: von Kármán’s famous result (based on
the Bernoulli theorem) was correct but based on imprecise arguments. It took a couple of decades before the-
oreticians learned how to calculate the front position using the principle of momentum conservation in an
integral form [Huppert, 2006].
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It is essential to return to the fundamental principles of momentum conservation when calculating the forces
of interaction. Using a control volume surrounding the obstacle, Ancey [2006] showed that once contact
between the avalanche and the obstacle has been established and the flow is steady (or nearly steady), then
the total force is the integral of the tensor 𝝓:

𝝓 = −p1 + 𝝈′ − 𝜌uu, (13)

in which p is the generalized pressured (i.e., the sum of the pressure induced by the gravitational forces and
the mean stress, also called the first invariant of the stress tensor), 1 denotes the unit tensor, 𝝈′ represents the
deviatoric stress tensor, u is the snow avalanche velocity at the volume boundary, and 𝜌 its density. If we take a
symmetric volume of control, such as the one depicted in Figure 15, then we can deduce from the momentum
balance equation for a steady flow that the force exerted on the obstacle by the moving snow is

F = −∫S3

(−p1 + 𝝈′) ⋅ ndS = ∫S0+S1+S2

𝝓 ⋅ ndS, (14)

where the normal to the boundary of the control volume is denoted by n.

In the inertia-dominated regime, the last term of equation (13) is dominant (it represents the flux of momen-
tum), and the total force F = ∫S 𝜌(u

2
2 − u2

1)dS then scales as 𝜌u2 , with  = hd the apparent surface of
the obstacle (see Figure 15). In the gravity-dominated regime, i.e., when velocity becomes sufficiently low, the
first two parts of equation (13), −p1 + 𝝈′, play key roles. The focus of this section is given to evaluating this
contribution of the noninertial terms.

Note that it is tempting to distinguish between the inertia- and gravity-dominated regimes by using a Froude
number [Mellor, 1968, 1978; Schaerer and Salway, 1980], but the lack of information about the scaling of
−p1+𝝈′ makes its introduction potentially confusing, a point already mentioned by Salm [1966] in the context
of the propagation of free-surface waves for flowing avalanches.

5.2. Rankine’s Theory
Different methods have been proposed for estimating the total normal stress 𝜎n = (−p1 + 𝝈′) ⋅ n. The first
one is the similarity between snow and soil. Salm [1967b, 1993] used Rankine’s theory to relate 𝜎n to normal
stress 𝜎y (in the vertical direction y):

𝜎n = k𝜎y , (15)

with kmin ≤ k ≤ kmax. Salm [1967b] introduced the active and passive pressure coefficients:

kmax = k−1
min = tan2

(
𝜋

4
+ 𝜑

2

)
, (16)

with 𝜑 the internal friction angle. If we assume that the normal stress 𝜎y is approximated by |𝜎y| = 𝜌g(h − y)
cos 𝜃, then equation (15) leads to forces per unit width that resemble hydrostatic forces:

F = ∫
h

0
𝜎ndy = 1

2
k𝜌gh2 cos 𝜃. (17)

Heimgartner [1977] assumed an elastoplastic behavior for flowing snow, which led him to k having a slightly
more complicated dependence on 𝜑 and 𝜏b. Norem [1990] used the passive pressure coefficient corrected by
a factor accounting for sidewall effects. By back calculating the forces damaging engineered structures, Ancey
[2006] found that k depended on the shape of the obstacle and the degree of confinement (concentration
of the snow flux near the obstacle). He found that k ranged from 2 (large obstacle) to 4 (small obstacle on an
open slope) or even 9 (small obstacle in a confined space).

Sovilla et al. [2010] provided high-resolution data of the pressure distribution across the flow depth for three
low-speed avalanches in the Vallée de la Sionne (Switzerland). Their data lead to a factor k ranging from 5.8 to
12.5, with a mean value of 9.2. They highlighted the existence of wide fluctuations in pressure, but except for
the early time points corresponding to the leading edge hitting the tower, the standard deviation was about
20% of the mean value. Given the uncertainty of the position of the free surface and snow density, and due

ANCEY AND BAIN GLIDE AVALANCHES AND SNOW GLIDING 763



Reviews of Geophysics 10.1002/2015RG000491

to the fact that snow chunks hit the sensors, these fluctuations were fairly moderate and did not put in doubt
the linear increase of pressure with depth. Baroudi et al. [2011] and Sovilla et al. [2014] also found that in the
field test sites of La Sionne and Col du Lautaret (France), pressure measurement depended on the sensor size
(probably because small sensors and snow chunks were about the same size). Sovilla et al. [2014] found that
snow pressure was increased by 1.7 on average when the sensor size was increased from 80 cm2 to 1 m2.

If we consider that the internal friction angle𝜑 ranges from 20∘ (loose low-friction bulk materials such as glass
beads) to 40∘ (high-friction coarse-grained materials), then equation (16) gives k values in the 2–4.6 range,
which is consistent with the values back calculated by Ancey [2006], but not the field measurements in La
Sionne. Elaborating on Rankine’s state theory, Baroudi et al. [2011] explained the high k values attained as the
effects of cohesion and finite size of the tower.

5.3. Hydrodynamic Approach
Another approach to estimating 𝜎n has been by using similarities to the drag force exerted by Newtonian
fluids on obstacles of typical size d. A large body of theoretical and experimental work has led to an expression
of 𝜎n as

𝜎n = 1
2

Cd𝜌u2, (18)

where 𝜌 denotes the fluid density, Cd is the drag coefficient that depends on the local Reynolds number
Re = 𝜌ud∕𝜂, 𝜂 the snow dynamic viscosity, and u is the velocity in the far field (undisturbed by the obstacle).
Using field measurements, a number of authors have deduced that the mean impact pressure is𝜎n ∝ 𝜌vn, with
n an index ranging from 1 to 1.7 [Isaenko, 1974; Eybert-Bérard et al., 1978; McClung and Schaerer, 1985]. The key
problem is that snow is not a Newtonian fluid and even if an equivalent viscosity were used, next to nothing is
known about 𝜂. To provide points of reference, Roch [1980] suggested considering fluids whose consistency
is similar to that of snow. He concluded that for flowing avalanches involving wet snow, Cd ranges from 2
to 10. For avalanche velocities in the 1–10 m s−1 range, Azuar [1980] stated that Cd varies between 1 and 3
but did not provide clear evidence. Extrapolating from results obtained for Newtonian fluids and particle sus-
pensions, Norem [1990] suggested that Cd was dependent on Re via a power law: Cd = 5.6Re−1∕4. Typically, for
an obstacle of width d = 1 m and snow with viscosity 𝜂∕𝜌 = 1 m2 s2 (corresponding to melted caramel) and
u ∼ 1 m s−1, the result is Cd = 5.6. In subsequent papers, Norem [1992] recommended using values of Cd ≥ 6.
The most recent field measurements at the Ryggfonn test site (Norway) have provided Cd values as high as
20–40 for slow wet-snow avalanches [Gauer et al., 2007, 2008], while for the Vallée de la Sionne site, values in
excess of 100 have been observed at the lowest Froude numbers [Sovilla et al., 2008].

Dimensional analysis has led to the proposal that the Froude number is a natural candidate for describing
flow dynamics [Salm, 1964; Grigorian, 1974; Bozhinskiy and Losev, 1998; Faug et al., 2010] and thus the drag
force has also been expressed as a function of the Froude number:

𝜎n = 1
2

Cd(Fr)𝜌u2, (19)

where the Froude number is defined using either the features of the obstacle Fr = u∕
√

gHo [Bozhinskiy and
Losev, 1998] or avalanche flow variables Fr = u∕

√
gh [Sovilla et al., 2008; Thibert et al., 2008], where Ho is

obstacle height and h is avalanche depth. Physically, however, there is no clear reason why the drag coefficient
should depend on the Froude number, as the interpretation of the latter deals with the flow features, not
rheological behavior. Indeed, in fluid mechanics, Fr provides information on how information propagates or
how flow kinetic energy compares with potential energy.

Field data obtained by Sovilla et al. [2008] in the Vallée de la Sionne and by Thibert et al. [2008, 2013] at the Col
du Lautaret have shown that Cd should scale as Cd ∝ Fr−n, with n in the 1.5–2 range for wet-snow avalanches.
Note that setting n = 2 leads to 𝜎n = 1

2
Cd(Fr)𝜌u2 ∝ 𝜌gh, a scaling that is consistent with Salm’s relationship

(15). At the Col du Lautaret, Thibert et al. [2013] found that

Cd = 1 + 5Fr−2, (20)

giving k ≈ 5 in equation (15). For dry-snow avalanches at the Col du Lautaret, Thibert et al. [2008] and Baroudi
and Thibert [2009] obtained Cd ∝ Fr−n, with n = 1.3 and 1.1, respectively; this shows that for these avalanches,
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the drag force exhibited velocity dependence. Although the data are not sufficiently numerous, the scaling
of Cd ∝ Fr−2 seems more representative of low-velocity wet-snow avalanches.

There have been attempts to generalize Voellmy’s equation (12). Gauer et al. [2008] proposed an empirical
equation expressed as

p = 1
2

C∗
d𝜌u2 = 1

2

(
Cd +

f
Fr2

)
𝜌u2, (21)

where Cd is the drag coefficient (function of the Reynolds number) and C∗
d the generalized drag coefficient.

Gauer and Jóhannesson [2009] used the empirical function determined experimentally by Wieghardt [1975],
f ≈ 4.8

√
h∕d. Faug [2013] used the mass and momentum balance equations for a Coulomb friction model to

justify the structure of the pressure equation (21) and to relate parameters Cd and f to the geometrical features
of the flow and obstacles, as well as the grain properties.

5.4. Comparison With Gravity-Driven Flows
Experience gained in the study of related phenomena, such as landslides and debris flows, can shed light on
the estimation of drag forces [Zanuttigh and Lamberti, 2007]. For pipeline engineering, Zakeri [2009] reviewed
the different expressions used to calculate the pressure 𝜎n generated by landslides and submarine debris.
Analogies with soil or non-Newtonian fluids are commonly used, and thus, equation (15) or (18) has been
proposed. For debris flows involving fine- or coarse-grained sediment, both types of formulations have been
proposed on the basis of field measurements, outdoor experiments with man-made slurries, or small-scale
laboratory experiments: Zhang [1993], Hu et al. [2011], and Bugnion et al. [2012] found that the expression for
hydrodynamic drag (18) (with Cd in the 3–5 range for full-scale flows) properly estimated impact pressures. A
number of authors have suggested that a hydrostatic-like model (15) matched the experimental impact data
well, with k estimated between 2.8 and 10, with a mean value of 4.5 [Armanini and Scotton, 1992; Armanini,
1997; Zanuttigh and Lamberti, 2006; Proske et al., 2008].

Contrary to Salm [1967b], who drew on the analogy between snow and soils to justify the linearity between
the normal stresses in equation (15), Armanini [1997] emphasized that this linearity is fortuitous and does not
reflect any static effect: assuming that the front velocity scaled as u ∝

√
gh, as in the Ritter solution to the

dam break problem, he then deduced that the dynamic pressure should vary as 𝜎n = 𝜌u2 ∝ 𝜌gh. Interestingly,
Roch [1961] also showed a linear correlation between impact pressure pi (in kPa) and height of new snow hs

(in cm), regardless of the type of avalanche: pi = 90hs − 22. As for wet-snow avalanches, u ∝
√

ghs is also
a reasonable approximation of the front velocity [Roch, 1980], so Armanini’s argument may indeed explain
Roch’s empirical observation.

As with avalanches, equations combining depth and velocity dependence have also been developed to rec-
oncile the two viewpoints. Using the impact data obtained by studying small-scale saturated granular flows,
Holzinger and Hübl [2004] adjusted the drag coefficients in equations (19) and (21). For slow flows and dense
flows, they found Cd(Fr) ≈ 4Fr−4∕3 and C∗

d ≈ 2.5Fr−1, respectively. Based on field data, the survey by Arattano
and Franzi [2003] concluded that Voellmy’s equation (12) was sufficient to capture the change in the force
of impact.

5.5. Insights From Laboratory Experiments
Laboratory experiments have also been conducted to determine how the velocity of various fluids (including
dry granular materials, granular suspensions, and viscoplastic fluids) affects drag force. In order to compare
those fluids with Newtonian liquids, drag force has often been expressed as equation (18), where the
drag coefficient is a function of various dimensionless numbers, such as the Knudsen number [Boudet and
Kellay, 2010], the Hedstrom or Bingham number [Pazwash and Robertson, 1975; Tabuteau et al., 2007], and the
generalized Reynolds number [Pfeiff and Hopfinger, 1986; Jossic and Magnin, 2009].

For dense granular materials at low velocity, drag pressure is found to be weakly dependent on that velocity
but to vary linearly with depth [Wieghardt, 1975; Chehata et al., 2003]. Sustained contacts between particles
carry frictional forces throughout the bulk material, and as a consequence, the stresses can be described by
the empirical Coulomb friction law: for a vertical cylinder of diameter d inserted in a granular flow of depth h,
the drag force is

 = c𝜌gdh2, (22)
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where c characterizes the grain properties (surface friction and particle concentration) [Albert et al., 1999;
Costantino et al., 2011]. The shape and size of the obstacle may slightly affect factor c and the quadratic depen-
dence on h [Albert et al., 2001]. Equation (22) is consistent with the Rankine model used by Salm [1967b]. A
comparison of equations (17) and (22) leads to setting c = 1

2
k cos 𝜃. For a cylinder of length L and diameter

d placed horizontally at a depth h, the drag force is  = c𝜌ghdL, with c ∼ 13 [Guillard et al., 2014]. The high
value of c is the result of the strong asymmetry in the pressure distribution between the stoss and lee sides of
the cylinder. This cylinder is also subjected to a significantly large lift force:

 = Cl𝜌gh
d2

4
L, (23)

where Cl is the lift coefficient, which is a function of the diameter-to-grain-size ratio. For sufficiently large
bar diameters, the lift coefficient is close to 20, which means that the lift force is 20 times higher than the
buoyancy force for a liquid with the same density. This unexpected effect (compared to classic Newtonian and
non-Newtonian liquids) originates from the redistribution of stresses near the moving cylinder: if we consider
flows from left to right, the bottom left quadrant of the cylinder experiences very high pressures, while the
top right quadrant undergoes significantly lower pressures. In the end, this anisotropic pressure distribution
produces both large drag and lift forces.

The deviation from a linear pressure distribution (and thus from the quadratic dependence of on h) is a likely
result of confinement [Katsuragi, 2012]: this effect, known as Janssen’s effect, occurs in confined granular flows
(e.g., in a funnel or a tube) when the contact forces between grains redirect the weight toward the sidewalls,
leading to an exponentially decreasing distribution of granular pressure [Nedderman, 1992; Bertho et al., 2003;
Stone et al., 2004]. This may explain why Ancey [2006] found different values for k depending on the obstacle’s
degree of confinement. Note, however, that further experiments with horizontal rotating bars in a granular
medium have also shown that the drag force may become independent of the depth, but contrary to the
sidewall screening evoked in Janssen’s effect, the pressure “shield” effect results from the anisotropic force
network caused by the bar’s motion [Guillard et al., 2013].

The solids fraction of the granular flow affects the strength of force fluctuations: above a critical solids fraction
cc (cc ∼ 0.603 for glass beads with a narrow size distribution), drag force exhibits significant periodic fluc-
tuations whose magnitude increases as the solids fraction increases [Gravish et al., 2010]. These fluctuations
originate from the deformation of the free surface (formation of a wedge of grains caused by the accumula-
tion of grains in front of the obstacle) and sudden failures within the jammed region (development of shear
bands) [Gravish et al., 2010; Hamm et al., 2011]. This may explain why Sovilla et al. [2010] observed significant
fluctuations in the drag forces of wet-snow avalanches, especially early on when the front passed the obsta-
cle. Indeed, in granular flows, the coarsest particles usually concentrate within the leading edge as a result of
particle size segregation [Gray and Ancey, 2009], and this gives rise to a denser front.

At higher velocities, the pressure in shallow flows may exhibit a quadratic dependence on velocity, which is
interpreted as the effect of momentum exchanges between colliding particles rather than a Bernoulli effect,
as seen in fluids [Takehara et al., 2010; Boudet and Kellay, 2010]. At very high velocities, a sharp bow shock wave
and a stagnation point are generated in front of the cylinder, while a depletion region (vacuum) forms on the
lee side [Heil et al., 2004; Hauksson et al., 2007; Teufelsbauer et al., 2009; Cui and Gray, 2013]. For cylinders pen-
etrating a dense granular flow, experiments show that pressure is weakly dependent on depth and velocity
[Hill et al., 2005; Seguin et al., 2013].

Another insight brought out by the study of dense granular flows is the determination of the key dimension-
less numbers. From a microstructural analysis of the change in the contact networks of granular flows in a
dense frictional-collisional regime, Ancey and Evesque [2000] introduced the Coulomb number Co = 𝜌pa2�̇�∕𝜎y ,
where 𝜌p is the particle density, a the particle radius, �̇� the shear rate, and 𝜎y the vertical normal stress. They
demonstrated that the bulk stresses should be a function of this number. In subsequent formulations, most
authors have used the so-called inertial number I =

√
Co and confirmed that for a certain range of flow

conditions, the bulk stress tensor is controlled by this dimensionless number [GDR-MIDI, 2004; Forterre and
Pouliquen, 2008]. Although the proposed scaling is essentially a phenomenological description of dense gran-
ular flows in the laboratory, and the bigger picture is still missing [Delannay et al., 2007; Börzsönyi et al., 2008;
Holyoake and McElwaine, 2012; Ancey, 2012b], it is interesting to wonder whether this approach could shed
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Table 1. Summary of the Geometric and Dynamic Features for the Case Studiesa

Variable Saint-François-Longchamp Cauterets

d (m) 0.51 1.49

𝜃 (deg) 19 35

u (m s−1) 0.5 10−4

𝜌 (kg m−3) 500 650

H (m) 7 5

h (m) 6.6 4.1

Back calculated pressure �̄�n (kPa) 61 200

Back calculated force  (kN) 205 1420

Froude number Fr 0.06 2 × 10−5

�̂�n given by Salm’s equation (15) (kPa) 62 64

�̂�n given by Gauer’s equation (21) (kPa) 308 230

�̂�n given by Thibert’s equation (20) (kPa) 81 65

Haefeli’s creep factor K (10) 0.56 0.98

Poisson’s ratio 𝜈 (10) 0.258 0.394

Haefeli’s glide factor N 2.4 2.4

Glide factor c (D3) 0 2

Efficiency factor 𝜂F (D4) 1 6.5

 given by the Swiss guidelines (D5) (kN) 125 1966

 given by McClung’s equation (7) (kN) 170 315

 given by McClung’s equation weighted by 𝜂F (kN) 170 2050
aWe show tower dimensions, ground slope inclines, avalanche and snowpack characteristics, estimates of the forces

leading to the damage observed, and the estimated total forces exerted  = 𝜎nhd = Fd using various methods. Values
for the coefficients involved in these calculations are also shown.

light on the physics of snow avalanches. For wet-snow avalanches with mean velocity u and depth h, as shear
is concentrated within a shear basal layer of thickness 𝛿 [Kern et al., 2009], the mean shear rate scales as u∕𝛿
and the normal stress varies as 𝜎y ≈ 𝜌gh cos 𝜃. The inertial number scales as I ∝ au∕(𝛿

√
gh) ∝ Fr since the

basal layer thickness is a few particle diameters (2a) and thus a∕𝛿 = O(1). This may explain why several field
studies have found that the drag coefficient is a function of the Froude number. If this were the case, then the
Froude number would just be a substitute for the inertial number.

6. Case Studies

The details of these case studies (chairlift towers damaged at Saint-François-Longchamp and Cauterets) are
in the supporting information. Table 1 summarizes the features of each tower and the forces they faced:

1. The force of the avalanche which bent the second tower at Saint-François-Longchamp (diameter 51 cm,
ground slope 19∘) was estimated at 205 kN, i.e., an equivalent mean pressure of �̃�n = 61 kPa. The avalanche
velocity was u ∼ 0.5 m s−1, its density was 𝜌 = 500 kg m−3, and the vertical depth of snow was approximately
7 m, leading to a Froude number of 0.06.

2. For tower P10 of the Cauterets cable car (diameter 122 cm but wider at the base; see the supporting infor-
mation), back calculation from the damage observed gave values of 1420 kN of drag force (horizontal
component) and 200 kPa for the depth-averaged snow pressure. Accumulated snow and avalanche deposits
made up a snowpack 4.8 m deep. Its depth-averaged density was estimated at 650 kg m−3. Glide velocity
was estimated to average 40 cm/d before the accident but reached 4 m/d on the morning of 16 February,
leading to a Froude number as low as 2 × 10−5.

It should be remembered that these values were back calculated from an analysis of the damage; they are
likely to present the lower limits of the forces and stresses rather than an accurate description of the forces
exerted on the structure by the gliding mass of snow. As pointed out above, we estimate that wet-snow
avalanches in their runout phase (u → 0) and fast-gliding snowpacks may present similarities in terms of
the forces they exert on structures. Naturally, this is a first approximation as the composition and structure
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of snowpacks and wet-snow avalanches differ greatly. We assume that the main difference in the two phe-
nomena lies in the expression of the efficiency factor introduced by Haefeli (see Appendix D): because this
coefficient reflects the history-dependent growth of the compression zone, we estimate that the typical time
associated with this growth is much longer than the characteristic duration of an avalanche, and so we have
set 𝜂F = 1. Furthermore, as McClung’s calculations assumed an infinitely wide structure, we have calculated
the force using equation (7) for an infinite width and have weighted McClung’s relation (7) using Haefeli’s
efficiency factor (D4). This should give an estimate of the force exerted on a finite-width structure.

6.1. Saint-François-Longchamp Glide Avalanche
Salm’s equation gives proper estimates of the normal stress for the Saint-François avalanche. Indeed, applying
a value of k = 4 to equation (17), as recommended by Ancey [2006], gives F̂ = 207 kN and �̂�n = 61 kPa; these
two values are remarkably close to the back calculations.

The drag coefficient Cd = 𝜎n∕(
1
2
𝜌u2) has to be close to 1000 for the Bernoulli-based estimate of pressure (18)

to give a reasonably accurate value. Applying expression (20), as fitted by Thibert et al. [2013], gives Cd = 1300.
This equation gives F̂ = 274 kN and �̂�n = 81 kPa, which are 30% higher than the back calculated values,
but owing to the uncertainty of the back-calculation, they are quite reasonable. The empirical equation (21)
developed by Gauer et al. [2008] gives much larger values: �̂�n = 308 kPa.

6.2. Gliding Snow at Cauterets
With regard to the models specifically developed for gliding snowpacks, Table 1 shows that both McClung’s
(7) and Haefeli’s (D5) equations provide correct estimates as long as they are weighted using the efficiency
factor 𝜂F .

Salm’s (17) and Thibert’s (20) equations considerably underestimate the stress due to a gliding snowpack (by
a factor of 3). Interestingly, Gauer’s equation (21), which overestimates the force generated by the wet-snow
avalanche at Saint-François-Longchamp, provides an estimate of the gliding stress which agrees closely with
back calculations for Cauterets.

7. Concluding Remarks

In this review, we gave a broad overview of the issues related to the formation and effects of glide avalanches.
The problems of snow gliding and wet-snow avalanches are closely related. While processes involving slip-
page of a finite volume of snow down a slope—be it the slow motion of a wet-snow avalanche or a gliding
snowpack—have been studied since the very beginning of the scientific study of avalanches, in the early
twentieth century, they have attracted less attention than dry-snow avalanches. The reasons are numerous.
On the one hand, in terms of damage potential, they are seen as much less harmful to human activities (infras-
tructure, transportation, and recreational activities) than dry-snow avalanches, and thus, most research efforts
have so far focused on enhancing our understanding of high-speed dry-snow avalanches. On the other hand,
not all of the processes related to wet-snow lend easily themselves well to analysis [Schweizer et al., 2003;
Mitterer, 2012].

New views on the subject have come about in part not only because more research is now being done but
also because global warming may shift the nature of the avalanche threat. In recent years, there has been an
increase in the number of accidents caused by gliding snow and glide avalanches, especially in ski resorts, and
thus there is growing concern that the very nature of the technical problems encountered in the management
of high-altitude areas (such as avalanche forecasting and mitigation) has changed.

This paper aimed to emphasize the existence of a solid phenomenology of the processes related to gliding
snow. Furthermore, empirical computational tools offer a zero-order description of the causes and effects of
glide avalanches. The review also identified weak spots in our understanding of wet-snow behavior, some of
which clearly deserve further research. The following points can be highlighted.

1. The meteorological conditions that cause snow to slip and/or form glide avalanches are well documented.
The topographical features enabling snow gliding are also fairly well known. The mechanisms that govern
slipping are, however, poorly understood. The most likely scenario, one that is consistent with field obser-
vations, is of the existence of wet patches of snow cover: locally, the snowpack base separates from the
ground and liquid water occupies the gap. When trapped, this water can be put under pressure, which
leads to a significant but local reduction of the bottom shear stress [Lackinger, 1986, 1988]. If the normal
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stress 𝜎x fails to resist the resulting load, then a glide crack develops. Depending on the dynamics of this
stress redistribution and the strength of the stauchwall, a glide avalanche may form [Bartelt et al., 2012].
To supplement mitigation techniques based on supporting structures [Margreth, 2007a], the drainage of
fine-grained soils could be an effective way to reduce the formation of wet patches.

2. Gliding snowpacks can generate forces on obstacles that are as large as the impact forces of high-speed
avalanches. Several analytical approaches have been developed to estimate the forces on an infinitely wide
obstacle. Haefeli’s work especially stands out because of its insightful physical description of the problem
[Haefeli, 1939, 1942]. Many of his developments were at the cutting edge of research at that time, and
remarkably, the equation he proposed is still used today. Unfortunately, part of the equation’s reasoning is
flawed, but the issues related to plasticity, dilatant frictional behavior, and boundary layer theory were far
from resolved in the 1930s. Subsequent developments by McClung [1982, 1984, 1993] corrected a num-
ber of weaknesses in Haefeli’s approach, but they were still achieved within the framework of infinitely
wide obstacles.

3. The crucial problem thus lies in the evaluation of the forces exerted on finite-sized obstacles. Their
magnitude can be much larger than the force generated by a one-dimensional gliding snowpack. The
explanation given by Haefeli [1939] is that a compression zone arises from the accumulation of snow
upstream of obstacle, while a tensile zone also pulls the obstacle downstream. As a result, the static force
generated by this combination of compressive and tensile forces substantially increases the load on a
finite-sized obstacle. Introducing an efficiency factor 𝜂F , Haefeli [1939, 1948] outlined a solution to this
thorny problem, but in practice, this factor relies on empirical justifications rather than on a firm theoret-
ical grounding. As shown in this paper’s case studies and those presented by Margreth [2007b], the value
of this factor is of paramount importance to a proper determination of the forces exerted, but as it varies
over a wide range, its determination remains a problematic issue in engineering applications. At the end
of the day, sound engineering judgment is the key to selecting a relevant value for 𝜂F .

4. Another issue concealed within theoretical approaches and empirical methods is the great spatial vari-
ability of snow properties [Schweizer et al., 2008]. Recent numerical models of changes in the snowpack
are likely to overcome these limitations [Bader et al., 1988; Kleemayr, 2004; Nicot, 2004; Teufelsbauer, 2011].
However, like many problems, there is a certain risk of using models that are very much more precise than
can be justified when taking into account the random features of a snowpack and the absence of field data
of sufficient accuracy. The case at Cauterets is interesting in that the snow cover surrounding the dam-
aged tower was the result of the accumulation of snowfall and avalanche deposits. Because of the mild
spells and rainfall, snow density reached incredibly high values (650 kg m−3 on average across the depth).
Snow depth also varied considerably in the close vicinity of the tower, depending on local topography and
avalanche activity over the preceding weeks. In summary, the Cauterets case is very far removed from the
ideal situation addressed by theoretical models, which consider the uniform snowpacks resulting from an
accumulation of snowfalls.

5. Research has focused on infinitely wide walls or small obstacles such as towers or tree trunks. For more
complicated obstacles, such as wedges and deflecting walls, little is known about the effects of gliding
snow. There is a clear lack of information concerning the influence of obstacle shape on the forces exerted
by a glide avalanche or gliding snowpack.

6. Following the initial suggestion by Voellmy [1955a], we believe that the partitioning of avalanches into
inertia- and gravity-driven flows offers a practical way of estimating the forces which avalanches exert on
obstacles [Ancey, 2006]. For low-velocity avalanches (gravity-dominated regime), the forces are similar to
the hydrostatic or lithostatic forces in fluids or soils at rest. For high-speed flows (inertia-dominated regime),
the forces are expected to be proportional to the square of the velocity.

7. As suggested by Salm [1967b, 1993], Rankine’s theory can be used to calculate the normal stresses for
gravity-dominated flows. This leads to results that are consistent with most field data and laboratory exper-
iments with granular flows; however, field surveys have also shown that it may fail to give the correct
magnitude of forces in certain cases [Baroudi et al., 2011]. Recent high-resolution field measurements have
confirmed a hydrostatic-like profile for the avalanche pressure on a cylindrical tower [Sovilla et al., 2008;
Baroudi et al., 2011; Thibert et al., 2013].

8. Several formulations of avalanche force have been proposed. To be consistent with the hydrostatic-like
behavior observed at low velocities, expressions based on the generalization of the drag force for New-
tonian fluids must make the drag coefficient dependent on the Froude number. Theoretically, there is no
strong dimensional argument supporting a dependence on a Froude number as this dimensionless num-
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ber reflects the flow features rather than rheological behavior. However, from a practical point of view,
this formulation may be useful as it can bridge the two limiting regimes using macroscopic flow variables
(velocity and flow depth). Alternatives include the use of local dimensionless numbers, such as the inertial
number used in the rheology of dense granular flows [Forterre and Pouliquen, 2008].

9. When looking at the table comparing model outcomes and field measurements for the case studies (see
Table 1), the current analytical models seem to be reasonably satisfactory with regards to successfully com-
puting the forces on small obstacles. It must be noted, however, that the analysis of damaged structures
leads to lower bounds of the forces exerted, not an estimate of the actual forces, and so here “satisfac-
tory” means that the models’ predictions are consistent with that lower boundary. There is no possibility
of discriminating between models. For instance, for Saint-François-Longchamp, Salm’s equation (15) gives
�̂�n = 62 kPa while Thibert’s equation (20) provides �̂�n = 81 kPa. Both estimates are consistent with the
back-calculated pressure value �̄�n = 61 kPa (lower bounds), but physically, we have no means of preferring
one over the other.

10. Visibly, after disasters, reasons that justify damage to structures will always be found, but questions about
the predictability of the magnitude of the potential forces exerted for a given period of return remain
unanswered. For instance, the Cauterets cable car was designed to resist natural hazards associated with a
certain probability of occurrence (period of return T = 30 years). Would it have been possible to anticipate
a 5 m deep snowpack, snow density as high as 650 kg m−3, and snow pressures in excess of 200 kPa? If the
Swiss guidelines are applied thoughtlessly (i.e., without referring to the 2013 event), estimates would be of
a snow depth H = 3.8 m (see Figure S15 in the supporting information), density 𝜌 = 270 kg m−3, K = 0.7,
c = 1.5, and N = 2.4, which would lead to a total force  = 200 kN. This is 7 times lower than the lower
boundary reported in Table 1.

Appendix A: Haefeli’s Approach

Here we summarize Haefeli’s main findings [Haefeli, 1939, 1942, 1944, 1948, 1951]. The assumptions used by
Haefeli were the following.

1. From a dynamic standpoint, snow cover upstream of the wall can be split into two parts: far upstream, there
is a neutral zone whose stress distribution is unaffected by the wall, and adjacent to the wall, there is a
compression zone in which the stress and strain distributions are markedly influenced by the wall.

2. The total force (per unit width) exerted by the snowpack on the wall can be split into two contributions: (i)
a static force Fs, which is parallel to the slope and represents the total force due to the creeping plastic flow
in the neutral zone on a surface normal to the sloping bed, and (ii) a gliding force Fg, which results from
the deceleration of the snow within the compression zone. Guided by his intuition for physics, Haefeli did
not justify this partitioning of forces. When translated into modern concepts, his treatment comes close to
the perturbation techniques used to deal with boundary layers (here the boundary layer is replaced by the
compression zone). Note that matched asymptotic expansions were developed after Haefeli’s papers (from
the 1950s onward) and were thus unknown to him at that time.

3. From the field observations he made, Haefeli kept in mind that the velocity profile was almost linear (see
Figure A1). In addition, by considering snow settlement and basal slip, he assumed that this profile was
entirely made up of three parameters: the creep angle (to the snowpack-free surface) 𝛽 , the glide velocity
ug, and the velocity ratio

n =
ug

us − ug
, (A1)

where ug denotes the basal slip velocity and us the free-surface velocity. A modern treatment of this equation
requires that the velocity field be determined during the calculations, but this ad hoc assumption based
on observations allowed Haefeli to avoid the details of rheological law. He assumed that the flow was fully
plastic throughout the neutral and compression layers, and he implicitly used the principle of coaxiality,
which states that the principal axes of the stress and strain rate tensors are coincident.

4. Gliding does not influence the stress distribution within the neutral zone as it is just a steady translation of
the entire snow cover; however, it profoundly modifies it within the compression zone as the basal velocity
is not constant and tends to zero near the wall. The boundary velocities us and ug are assumed to decrease
gradually from their maximal values reached in the neutral zone to zero at the wall. As the plastic defor-
mations gradually disappear in the vicinity of the wall, Haefeli assumed that the basal shear resistance
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Figure A1. Shape of the velocity profile. The velocity field is assumed to take the form u(y) = ug + Γy cos 𝛽 and
v(y) = −Γy sin 𝛽 with Γ = ug∕(nh).

decreased quadratically within the compression zone:

𝜏b = 𝜏0

[
1 −

(
x′

𝓁c

)2
]
, (A2)

with 𝜏0 = 𝜌gh sin 𝜃 the bottom shear stress in the neutral zone and x′ the distance to the wall. The resis-
tance lost is taken up by the normal stresses 𝜎(g)

x , where the index (g) indicates that this contribution is a
supplementary stress due to gliding deceleration. 𝜎(g)

x is assumed to be uniform across the depth.
5. Even though the wall retains snow behind it, neither mass accumulation nor density variation is considered

in the calculations. Likewise, snow depth does not vary with x.

Consider a point P at depth h − y (see Figure 12). As the velocity field is imposed, the strain rate state is fully
determined, we can thus plot the corresponding Mohr circle for strain rates, as shown by Figure A2. We deduce
that the angle between the principal strain rate and the y direction is Λ = 𝜋∕4 − 𝛽∕2. As the snow depth is
constant, we can determine the shear and normal stresses acting on a surface parallel to the ground. Using
the coaxiality principle, we can then determine the position of the center C of Mohr’s circle by drawing a line
running from P with an angle 2Λ to the 𝜎 axis, as shown in Figure A2. As this circle is unique, the stress state
on any surface facing P is determined by Mohr’s circle. From Mohr’s circle, we also deduce that the principal
stresses are

𝜎1 = 𝜎y + 𝜏 cot𝜓, (A3)

and
𝜎2 = 𝜎y − 𝜏 tan𝜓, (A4)

with 𝜓 = 𝜋∕4 + 𝛽∕2. The stress state Q on Mohr’s circle gives the normal stress 𝜎x acting on a plane normal
to the ground:

𝜎x = 𝜎y − 2𝜏 cot
(
𝜋

2
− 𝛽

)
= 𝜎y − 2𝜏 tan 𝛽, (A5)

from which we deduce the static force by integration over the snow depth:

Fs = ∫
h

0
𝜎xdy = 1

2
𝜌gh2 cos 𝜃(1 − 2 tan 𝜃 tan 𝛽). (A6)

Haefeli estimated the gliding force by considering the static balance of the compression zone. Owing to
the loss of basal resistance and its quadratic variation (A2), the gliding force is the difference between the
downward component of weight and the basal resistance force:

Fg = 𝜎(g)
x h = 1

3
𝜌gh𝓁c sin 𝜃, (A7)
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Figure A2. Mohr’s circles for strain rates and stresses. Here we use the sign conventions used in soil mechanics
(compressive strain rates are positive) [Nedderman, 1992]. The normal and shear strain rates are �̇�x = −𝜕x u = 0,
�̇�y = −𝜕y v = Γ sin 𝛽 , and �̇� = 1

2
(𝜕y u + 𝜕x v) = Γ cos 𝛽 with Γ = ug∕(nh). The circle for strain rates is easily plotted as the

center C of the circle is located at �̇� = 1
2
(�̇�x + �̇�y) =

1
2
Γ sin 𝛽 . The point P is located at (�̇�x , �̇�) = Γ(sin 𝛽,

1
2

cos 𝛽). The circle
for stresses is constructed as follows. As the flow depth is uniform, the normal and shear stresses on an elementary
surface parallel to the ground are 𝜏 = 𝜌g(h − y) sin 𝜃 and 𝜎y = 𝜌g(h − y) cos 𝜃. Stress state P lies along the line inclined at
𝜃 to the 𝜎 axis. Because of the coaxiality principle, the angle between the normal stress axis and CP is Λ. The
intersection of the Mohr circle with the 𝜎 axis gives the position of the principal axes 𝜎1 and 𝜎2, at points A and B,
respectively. Mohr’s circle for stresses is tangent to the straight lines 𝜏 = ±𝜎 tan𝜑 given by equation (A11). Point P’ is the
point of intersection between the yield criterion (A11) and Mohr’s circle.

where Haefeli found the length of the compression zone to be

𝓁c =
h

cos 𝜃

√
2 cot 𝜃 cot 𝛽(1 + 3n). (A8)

According to Haefeli [1942], the approximation tan 𝜃 tan 𝛽 = tan 𝛽45, where 𝛽45 is the creep angle for a slope
𝜃 = 45∘, holds true for a wide range of slopes. Experimental data provided a relationship between 𝛽45 and
snow density 𝜌:tan 𝛽45 = 0.57(1 − 𝜌∕𝜌i), where 𝜌i = 917 kg m−3 is the ice density. Haefeli ended up with the
following estimate of the gliding force:

Fg = 𝜎(g)
x h ≈ 1

3
𝜌gh2 tan 𝜃

√
2 cot 𝛽45(1 + 3n). (A9)

The total force, which is the sum of equations (A6) and (A9), can then be expressed as

F = 1
2
𝜌gH2

(
cos3 𝜃(1 − 2 tan 𝛽45) + KhN

)
, (A10)

where H = h∕ cos 𝜃 is the snow depth measured vertically, Kh = 1
3

sin(2𝜃)
√

2 cot 𝛽45 is Haefeli’s creep factor,

and N =
√

1 + 3n is Haefeli’s gliding factor. Haefeli’s work has been revisited, but the structure of the final
equation (A10) has remained the same.
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A closer inspection of Mohr’s circles for stresses shows that they grow in size as snow depth increases. As these
circles are a one-parameter family of curves, one can show that their envelopes are two symmetric straight
lines, which represent the yield surface in the 𝜎 − 𝜏 plane:

𝜏 = ±𝜎 tan𝜑 with tan𝜑 = sin 𝜃√
cos 𝛽 cos(2𝜃 + 𝛽)

. (A11)

Appendix B: Bucher’s Model

Bucher reformulated Haefeli’s model where snow was regarded as a compressible viscous fluid rather than
a plastic material. By introducing a Newtonian constitutive equation, Bucher [1948] determined the velocity
from the momentum balance equation instead of assuming it. For an isotropic compressible Newtonian fluid,
the stress tensor 𝝈 is usually expressed as a function of the strain rate tensor d, as follows:

𝝈 = −p1 + 2𝜂
(

d − trd
3

1
)
+ 𝜆

trd
3

1, (B1)

where 1 denotes the identity tensor. The first contribution on the right-hand side represents the pressure p,
i.e., an isotropic stress independent of the rate of deformation; for compressible fluids at rest, this is often
associated with the notion of thermodynamic pressure given by an equation of state. The second term is
the stress generated by isochoric deformations, while the third term corresponds to the stress induced by
isotropic volume variations. Two viscosities are introduced: 𝜂 is the shear viscosity and𝜆 is the compression (or
bulk) viscosity [Truesdell and Rajagopal, 1999]. In fact, the original equation used by Bucher [1948] was closer to
that used in mechanics of elastic bodies than in fluid mechanics. Following the developments of Salm [1977]
and ignoring the pressure term p, we can express the strain rate tensor as a function of the stress tensor in a
form reminiscent of Hooke’s law:

d = 1
2𝜂

(
𝝈 − tr𝝈

𝜈

1 + 𝜈
1
)
, (B2)

where 𝜈 denotes Poisson’s ratio (0 < 𝜈 < 0.4 for snow) [Salm, 1967a]. This equation is equivalent to
equation (B1) when using 𝜆 = 2𝜂(1 + 𝜈)∕(3 − 6𝜈).

Approximate solutions to the steady state on a uniform sloping bed can be found by using lubrication theory:
if the gradients in the x direction are negligible relative to those in the y direction, then the velocity field
u = (u, v,w) depends only on y. Density variations can be neglected, and the stress field thus satisfies

𝜎x = 𝜎z = 𝜎x = 𝜈

1 − 𝜈
𝜎y , (B3)

𝜎y = 2𝜂
1 − 𝜈

1 − 2𝜈
v′(y) = −𝜌g(h − y) cos 𝜃, (B4)

𝜏 = 𝜂u′(y) = 𝜌g(h − y) sin 𝜃, (B5)

subject to u(0) = ug and v(0) = 0. We then deduce the steady state solution

vss(y) =
1 − 2𝜈
1 − 𝜈

𝜌g cos 𝜃
4𝜂

y(2h − y), (B6)

uss(y) = ug +
𝜌g sin 𝜃

2𝜂
y(2h − y). (B7)

In the absence of slip (ug = 0), the v∕u ratio provides the creep angle [Bucher, 1948; Salm, 1977], which makes
it possible to link the coefficients introduced by Haefeli with Poisson’s ratio:

tan 𝛽 =
vss

uss
= 1

2
1 − 2𝜈
1 − 𝜈

cot 𝜃. (B8)
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The overall problem of the influence of snow cover on a retaining wall is more intricate. Bucher [1948] built
an approximate solution by simplifying the governing equations and considering slightly different boundary
conditions. He did not give many justifications for these simplifications, but we can deduce from his report
that he assumed that the normal stress 𝜎x in the compression zone increases significantly in order to counter-
balance the decrease in basal resistance. For plane deformations (w = 0), equation (B2) leads to the expression
of the third normal stress 𝜎z as 𝜎z = 𝜈(𝜎x + 𝜎y). Equation (B2) leads to the following expression of the velocity
gradient 𝜕xu:

�̇�x = 𝜕u
𝜕x

= 1 − 𝜈

2𝜂

(
𝜎x −

𝜈

1 − 𝜈
𝜎y

)
. (B9)

By neglecting the normal stress 𝜎y , he related the normal stress 𝜎x directly to the velocity gradient: 𝜎x =
2𝜂𝜕xu∕(1− 𝜈). Similarly, neglecting 𝜕x v, he assumed that the shear stress could be approximated by 𝜏 = 𝜂𝜕yu.
As inertia is almost nonexistant, the conservation of momentum in the x direction is

− 𝜌g sin 𝜃 =
𝜕𝜎x

𝜕x
+ 𝜕𝜏

𝜕y
≈ 2𝜂

1 − 𝜈

𝜕2u
𝜕x2

+ 𝜂
𝜕2u
𝜕y2

. (B10)

For the boundary conditions, he assumed that (i) there is no slip at the bottom (ug = 0); (ii) no snow penetrates
into the wall (u = 0 at x = xw); (iii) normal stress vanishes at the free surface 𝜕yu(x, h) = 0; and (iv) in the
far field (x → −∞), the velocity field matches the steady state solution (B7). Further, to make the problem
tractable, he used the following approximation for the steady state velocity: y(2h− y) ≈ h2 sin[𝜋y∕(2h)]. With
the change of variable x → 𝜁x and 𝜁 =

√
(1 − 𝜈)∕2, equation (B10) is a nonhomogeneous Laplace equation

that can be solved using the variable separation method. The final solution takes the form of an infinite series,
for which Bucher [1948] provided only the first (and dominant) term:

u(x, y) = uss(y)
(

1 − exp
(
𝜋

2
𝜁

x − xw

h

))
, (B11)

with the velocity in the far field:

uss(y) =
𝜌gh2 sin 𝜃

2𝜂
sin

(
𝜋

2
y
h

)
. (B12)

From equations (B9) and (B12), we can deduce that the total normal force exerted on the wall (per unit
width) is

Fg = −∫
h

0
𝜎x(0, y)dy =

𝜌gh2 sin 𝜃√
2(1 − 𝜈)

. (B13)

Although the structure of Bucher’s equation (6) differs from Haefeli’s (A7), their ratio gives
3 sin(2𝜃)∕

√
32(1 − 2𝜈) ∼ 0.9 for 𝜃 = 𝜋∕4 and 𝜈 = 1∕3. Furthermore, as Salm [1977] pointed out, the length of

the compression zone (determined as the distance to the wall from which the streamwise velocity u reaches
95% of its steady state value) is

𝓁c =
6
𝜋𝜁

h, (B14)

and is numerically fairly close to expression (A8) found by Haefeli. We then conclude that in the absence
of gliding, Haefeli’s and Bucher’s models are consistent with each other in spite of the significant differ-
ences in approach. Salm [1977] mentioned that some work had been done to extend Bucher’s theory to
gliding snowpacks, which resulted in an empirical expression in which the snow depth was replaced by a
fictitious depth.
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Appendix C: McClung’s Approach

Another model for gliding snowpacks developed by McClung [1982, 1984, 1993], McClung et al. [1984], and
McClung and Larsen [1989] was based on the following assumptions.

1. In the most general terms, creeping snow behaves like a compressible viscoelastic fluid (Burgers’ fluid).
2. However, over a sufficiently long time period, elastic response can be neglected and the rheological behav-

ior is that of a compressible Newtonian fluid, with viscosity 𝜂, Poisson’s ratio 𝜈, and density 𝜌. The constitutive
equation is thus the same as equation (B1) considered by Bucher [1948]. In this respect, the contribution by
McClung and coworkers can be seen as a reformulation of Bucher’s model for gliding snow cover.

3. Snow glides along the ground with a slip velocity of ug that depends on the bottom shear stress 𝜏b:

ug =
D𝜏b

𝜂
, (C1)

where D is the stagnation depth, i.e., a fictitious depth at which the velocity profile vanishes (see also
section 3.5). When the velocity profile is assumed to be linear, as in Haefeli’s model, the depth ratio D∕h is
equivalent to the velocity ratio n introduced in (A1) by Haefeli (intercept theorem). In the absence of glid-
ing (ug = 0), bottom shear stress would be zero, but this does not hold true if the snow cover is sheared.
McClung expressed the bottom shear stress as a function of ū instead of the gliding velocity ug. He thus
generalized equation (C1) by introducing a characteristic length known as D∗:

𝜏b = 𝜂ū
D∗

with ū = 1
h∫

h

0
udy, (C2)

the depth-averaged velocity.
4. Deformation is slow and occurs mainly downward, resulting in snow compaction in the vicinity of the wall;

inertia can thus be neglected. The retaining wall is frictionless.
5. In the region influenced by the wall, there is a loss of basal resistance due to snow deceleration which is

taken up by the normal stress 𝜎x . In the direction normal to the ground, snow settlement can be neglected.
The normal stress 𝜎y is the same as in the uniform region far upstream from the retaining wall:

𝜎y = −𝜌g(h − y) cos 𝜃. (C3)

Following McClung [1982], we consider an infinitesimal slice in the compression zone, between x and x + dx
(see Figure 12). In the absence of inertial terms, the force balance is

h(�̄�x(x + dx) − �̄�x(x)) = dx(𝜏b − 𝜌gh sin 𝜃), (C4)

where

�̄�x = 1
h∫

h

0
𝜎xdy (C5)

denotes the depth-averaged normal stress. Taking the depth average of the velocity gradient (B9), we obtain

𝜕ū
𝜕x

= 1 − 𝜈

2𝜂

(
�̄�x −

𝜈

1 − 𝜈
�̄�y

)
, (C6)

where �̄�y is calculated by taking the average of the normal stress (C3). Taking the limit dx → 0 of equation (C4)
and making use of equations (C2) and (C6), we end up with a second-order differential equation for ū:

− 2𝜂
1 − 𝜈

h
d2ū
dx2

+ 𝜂
ū

D∗
= 𝜌gh sin 𝜃, (C7)

subject to the boundary conditions ū(xw) = 0 and ū → ūss = 𝜌ghD∗ sin 𝜃∕𝜂 when x → −∞. The solution
is then

ū = ūss

(
1 − expmx′

)
with m =

√
1 − 𝜈

2hD∗
, (C8)
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with x′ = x − xw being the distance to the wall. The length of the compression zone is approximated by

𝓁c = 3h

√
2

1 − 𝜈

D∗

h
. (C9)

Numerical applications show that 𝓁c is proportional to the flow depth and its value agrees well with those
found by Haefeli (A8) and Bucher (B14). Using equations (C6) and (C3), we then deduce that the force (per
unit width) exerted on the wall by the snow cover Fg = −h�̄�x is the sum of two contributions which McClung
[1982] calls the dynamic and static pressure terms:

Fg =
𝜌gh2 cos 𝜃

2

(
2𝜅 tan 𝜃 + 𝜈

1 − 𝜈

)
, (C10)

with

𝜅 =
√

2
1 − 𝜈

D∗

h
=
√

12n + 3.24 + 𝜈

6(1 − 𝜈)
(C11)

for a frictionless wall.

Appendix D: Finite-Size Effect

Most analytical models of snow force calculation have considered infinitely wide retaining walls so that the
study of snow motion can be restricted to the x − y plane. Yet on many if not most occasions, obstacles are of
finite dimensions; i.e., their width is comparable to the snow depth. Haefeli [1942, 1948] tackled the problem
of flow past single obstacles by running experiments in the laboratory using highly viscous materials (gela-
tine) and snow samples. He also monitored the force exerted by a snow cover on a metallic frame placed
normal to the ground on an open slope at Weissfluhjoch. He summarized his observations by proposing
a phenomenological description of the interaction between a single obstacle and a gliding/creeping snow-
pack (see Figure D1).

Compared to the usual case involving an incompressible Newtonian flow past a cylinder, snow compressibil-
ity and cohesion give rise to specific behaviors: over time, an accumulation zone (Staubereich) grows in size
upstream of the obstacle, as long as the snow cover experiences creep and glide. That growth can also be
enhanced as a result of snow compaction and cohesion. This accumulation zone undergoes significant com-
pression. Downstream of the obstacle, there is a region dominated by large tensile stresses, while on either

Figure D1. Sketch showing the different flow zones around a cylindrical obstacle. Adapted from Haefeli [1939].
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side of the obstacle, shear is produced by differences in velocity. Figure D1 shows how the space surround-
ing the obstacle is partitioned into compression, traction, and shear zones. The snow’s characteristics (density
and cohesion) also vary spatially depending on the stress state. The changes in this system are history depen-
dent, which makes the calculation of forces over control volume quite different from the case involving simple
fluids shown in Figure 15.

Haefeli [1939] considered that the axial strain 𝜖xx (in the x direction) was related to the tensile/compressive
stress 𝜎x by 𝜖xx = ai𝜎x , where ai denotes a compliance coefficient and i = 1, 2 an index referring to tensile
and compressive stresses, respectively. He assumed a linear distribution of the normal stress in the transition
zone (comprising the compression and tensile regions; see Figure D1): 𝜎x = ±𝜎ix∕𝓁i , where 𝜎i denotes the
stress at the boundary of the traction/compression region. Since the total tensile strain Δ𝓁1 = ∫ 𝓁1

0 𝜖xxdx

should counterbalance the total compressive strain Δ𝓁2 = ∫ 𝓁2
0 𝜖xxdx, then the lengths of the compression

and traction zones 𝓁2 and 𝓁1 are related to each other by

|Δ𝓁1| = 1
2

a1𝓁
2
1 = 1

2
a2𝓁

2
2 , (D1)

from which he deduced √
a2

a1
=

𝓁1

𝓁2
=

𝜎2

𝜎1
= s. (D2)

Haefeli [1939, 1951] approximated the total force  on the structure as the sum of the traction and
compression stresses integrated over an effective surface Wh, where W denotes the typical width of the
compression zone:

 = Wh(𝜎2 + 𝜎1) = 𝜂F𝜎2dh, (D3)

where 𝜂F has been called the efficiency factor and has been empirically linked to the depth-to-diameter ratio:

𝜂F = (1 +
√

s)W
h

≈ 1 + c
h
d
, (D4)

where c is an empirical gliding factor that ranges from 0.6 (low gliding rate) to 6 (high gliding rate) [Margreth,
2007b]. This also means that the width of the compression zone varies as W ∝ h2∕d + d. Thus, within the
limits of wide obstacles d ≫ h we retrieve W ∝ d, while within the limits of small obstacles, W ∝ h2∕d, which
is in accordance with field observations that narrow elements such as cables undergo high pressures. The
standard value c = 1 gives 𝜂F values close to 4 for snow depths ranging from 2.5 to 3 m, and striking a 1 m
wide wall, and this is in agreement with the field measurements reported by Haefeli [1951]. According to the
Swiss guidelines [Margreth, 2007a], the force per unit width F = 𝜎2h can be computed using equation (9). In
the end, the total force is

 = 1
2
𝜂F𝜌gH2dKN. (D5)

More recently, Bader et al. [1988] have used finite-element numerical methods to solve Bucher’s governing
equations for a steady, uniform flow past a cylinder normal to the ground and in the absence of gliding. The
constitutive equation is given by equation (B2). Their numerical results for 𝜈 = 0.33 (loose snow) can be
summarized by the following relationship:

 = 𝜌gh3 sin 𝜃

(
0.85 + 2.68

d
h
− 0.14

d2

h2

)
. (D6)

Notation

a coefficient.
c constant.
c particle volume concentration (solids fraction).

cm maximum solids fraction.
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cc critical solids fraction.
Cd drag coefficient.
C∗

d generalized drag coefficient.
Cl lift coefficient.
d diameter.
D stagnation depth.
D∗ generalized stagnation depth.
d strain rate tensor.
f friction factor.
F force per unit width.
 total force.
Fr Froude number.
g gravity acceleration.
h snow depth (normal to the ground).

hs height of new snow.
hw pressure head.
H snow height (measured vertically).
k stress ratio.
K Haefeli’s creep factor.
𝓁 length of the patch.
𝓁c length of the compression zone.

L length of the slab.
L length of the obstacle.
n Haefeli’s velocity ratio.
N Haefeli’s glide factor.
n normal unit vector.
p pressure, first invariant of the stress tensor.
P precipitation quantile.
r meniscus radius.

Re Reynolds number.
s snow relative density.
s stress ratio.

Sw liquid saturation.
 surface of control.
u velocity in the x direction.
u mean velocity of the avalanche.
u elocity field.
ū depth-averaged velocity.

ug glide velocity.
us free-surface velocity.
uss steady state velocity.
xw wall position.
W width of the compression zone.
W liquid water content.
𝛽 creep angle.
𝛿 thickness of a thin layer.
�̇�x strain rate in the x direction.
𝜂 shear viscosity.
𝜂F Haefeli’s efficiency factor.
𝛾 water surface tension.
�̇� shear rate.
Γ shear rate.
𝜅 dimensionless number in McClung’s model.
Λ angle in Mohr’s circle.
𝜆 bulk viscosity.
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𝜇 friction coefficient.
𝜈 Poisson’s ratio.
𝜑 Coulomb’s angle of friction.
𝝓 generalized stress tensor.
𝜙s snow porosity.
𝜌 snow density.
𝜌w water density.
𝜌i ice density.
𝜎b stress normal to the ground.
𝜎′

b effective bottom normal stress.
𝜎n stress normal to the obstacle.
𝜎x normal stress in the x direction.
𝜎y normal stress in the y direction.
𝜎z normal stress in the z direction.
𝜎1 first principal stress.
𝜎2 second principal stress.
𝝈′ extra stress tensor.
𝜏 shear stress.
𝜏b bottom shear stress.
𝜏0 bottom shear stress in the neutral zone.
𝜃 ground slope.
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in der Gand, H. R., and M. Zupančič (1965), Snow gliding and avalanches, in Scientific Aspects of Snow and Ice Avalanche, vol. 69,

pp. 230–242, International Association of Hydrological Sciences, Davos, Switzerland.
Isaenko, E. P. (1974), Snow avalanche impact pressure on an obstacle, in Mécanique de la Neige, pp. 433–440, Publication No. 114, 1975,

International Association of Hydrological Sciences, Grindelwald.
Iverson, R. M. (1997), The physics of debris flows, Rev. Geophys., 35, 245–296.
Iverson, R. M. (2003), The debris-flow rheology myth, in Debris Flow Mechanics and Mitigation Conference, edited by C. L. Chen and

D. Rickenmann, pp. 303–314, Mills Press, Davos.
Iverson, R. M. (2005), Regulation of landslide motion by dilatancy and pore pressure feedback, J. Geophys. Res., 110, F02015,

doi:10.1029/2004JF000268.
Iverson, R. M., and J. Vallance (2001), New views of granular mass flows, Geology, 29, 115–118.
Johnson, A. M. (1970), Physical Process in Geology, Freeman, Cooper, San Francisco, Calif.
Jones, A. (2004), Review of glide processes and glide avalanche release, Avalanche News, 69, 53–60.
Jordan, R. E., J. P. Hardy, F. E. Perron, and D. J. Fisk (1999), Air permeability and capillary rise as measures of the pore structure of snow:

An experimental and theoretical study, Hydrol. Process., 13, 1733–1753.
Jossic, L., and A. Magnin (2009), Drag of an isolated cylinder and interactions between two cylinders in yield stress fluids, J. Non-Newtonian

Fluid Mech., 164, 9–16.

ANCEY AND BAIN GLIDE AVALANCHES AND SNOW GLIDING 781

http://dx.doi.org/10.1103/PhysRevLett.105.128301
http://dx.doi.org/10.1103/PhysRevLett.110.138303
http://dx.doi.org/10.1063/1.4869859
http://dx.doi.org/10.1103/PhysRevE.84.041304
http://www.issw.net/
http://dx.doi.org/10.1103/PhysRevE.70.060301
http://dx.doi.org/10.1209/epl/i2005-10203-3
http://dx.doi.org/10.1029/2004JF000268


Reviews of Geophysics 10.1002/2015RG000491

Katakawa, K., C. Shimomura, H. Ishikawa, S. Hatae, and H. Matsuda (1992), Characteristics of snow pressure acting on avalanche-preventive
fences, in Second International Conference on Snow Engineering, edited by W. Tobiasson and E. Wright, pp. 323–331, USA Cold Regions
Research and Engineering Laboratory, Spec. Rep. 92-27, Santa Barbara, Calif.

Katsuragi, H. (2012), Nonlinear wall pressure of a plunged granular column, Phys. Rev. E, 85(2), 21,301, doi:10.1103/PhysRevE.85.021301.
Keiler, M., J. Knight, and S. Harrison (2010), Climate change and geomorphological hazards in the eastern European Alps, Proc. R. Soc.

London, Ser. A, 368, 2461–2479.
Kern, M. A., P. Bartelt, B. Sovilla, and O. Buser (2009), Measured shear rates in large dry and wet snow avalanches, J. Glaciol., 55, 327–338.
Kleemayr, K. (2004), Modelling and simulation in snow science, Math. Comput. Simul., 66, 129–153.
Lackinger, B. (1986), Stability and fracture of the snow pack for glide avalanches, in Avalanche Formation, Movement and Effects, edited by

H. Gubler and B. Salm, pp. 229–241, IAHS, Wallingford, Oxfordshire, U. K. IAHS Publication No. 162, 1987, Davos.
Lackinger, B. (1988), Zum Problem der Gleitschneelawine, in Interpraevent, vol. 3, pp. 205–226, Graz, Austria.
Lagotala, H. (1927), Étude de l’avalanche des Pélerins (Chamonix), Société Générale d’Imprimerie, Genève, Switzerland.
Larsen, J. O., J. Laugesen, and K. Kristensen (1989), Snow-creep pressure on masts, Ann. Glaciol., 13, 154–158.
Laternser, M., and C. Pfister (1997), Avalanches in Switzerland 1500–1990, in Rapid Mass Movements Since the Holocene, vol. 30, edited by

J. Matthews, pp. 241–266, Special Issue of European Palaeoclimate and Man, 16, Stuttgard, Germany.
Lavigne, A., L. Bel, E. Parent, and N. Eckert (2012), A model for spatio-temporal clustering using multinomial probit regression: Application

to avalanche counts, Environmetrics, 23, 522–524.
Legros, F. (2002), The mobility of long-runout landslides, Eng. Geol., 63, 301–331.
Leitinger, G., P. Höller, E. Tasser, J. Walde, and U. Tappeiner (2008), Development and validation of a spatial snow-glide model, Ecol. Model.,

211, 363–374.
Louge, M. Y., C. S. Carroll, and B. Turnbull (2011), Role of pore pressure gradients in sustaining frontal particle entrainment in eruption

currents: The case of powder snow avalanches, J. Geophys. Res., 116, F04030, doi:10.1029/2011JF002065.
Margreth, S. (2007a), Defense Structures in Avalanche Starting Zones. Technical Guideline as an Aid to Enforcement, Federal Office for the

Environment, Bern and Eidgenössisches Institut für Schnee- und Lawinenforschung, Davos, Switzerland.
Margreth, S. (2007b), Snow pressure on cableway masts: Analysis of damages and design approach, Cold Reg. Sci. Technol., 47, 4–15.
Margreth, S. (2013), When should a hazard map show the risk of small avalanches or snow gliding?, in International Snow Science Workshop,

pp. 679–683, Grenoble, France. [Available at http://www.issw.net/.]
Margreth, S., L. Stoffel, and M. Schaer (2013), Berücksichtigung der Lawinen- und Schneedruckgefährdung bei touristischen Transportanlagen,

Bundesamt für Verkehr (BAV), Bern and Eidgenössisches Institut für Schnee- und Lawinenforschung, Davos, Switzerland.
Marsh, P. (1991), Water flux in melting snow covers, in Advances in Porous Media, vol. 1, edited by M. Y. Corapcioglu, pp. 61–124, Elsevier,

Amsterdam.
Marsh, P. (2005), Water flow through snow and firn, in Encyclopedia of Hydrological Sciences, edited by M. G. Anderson, Part 14. Snow and

Glacier Hydrology. Article 161, Wiley, New York.
Matsumoto, H., S. Yamada, and K. Hirakawa (2010), Relationship between ground ice and solifluction: Field measurements in the Daisetsu

Mountains, Northern Japan, Permafrost Periglacial Process., 21, 78–89.
Matsuoka, N. (1998), Modelling frost creep rates in an alpine environment, Permafrost Periglacial Process., 9, 397–409.
Matsuoka, N. (2005), Temporal and spatial variations in periglacial soil movements on alpine crest slopes, Earth Surf. Process. Landforms, 30,

41–58.
McClung, D. M. (1975), Creep and the snow-earth interface condition in the seasonal alpine snowpack, in Symposium Mecanique de la neige.

Actes du colloque de Grindelwald, vol. 114, pp. 236–248, International Association of Hydrological Sciences, Wallingford, U. K.
McClung, D. M. (1980), Creep and Glide Processes in Mountain Snowpacks, National Hydrology Research Institute, Ottawa.
McClung, D. M. (1981), A physical theory of snow gliding, Can. Geotech. J., 18, 86–94.
McClung, D. M. (1982), A one-dimensional analytical model for snow creep pressures on rigid structures, Can. Geotech. J., 19, 401–412.
McClung, D. M. (1984), Empirical corrections to snow creep pressure equations, Can. Geotech. J., 21, 191–193.
McClung, D. M. (1986), Mechanics of snow slab failure from a geotechnical perspective, in Avalanche Formation, Movement and Effects,

vol. 162, edited by H. Gubler and B. Salm, pp. 475–507, IAHS, Wallingford, Oxfordshire, U. K., and Davos, Switzerland.
McClung, D. M. (1993), Comparison of analytical snow pressure models, Can. Geotech. J., 30, 947–952.
McClung, D. M. (2013), The effects of El Niño and La Niña on snow and avalanche patterns in British Columbia, Canada, and central Chile,

J. Glaciol., 59, 783–792.
McClung, D. M., and G. K. Clarke (1987), The effects of free water on snow gliding, J. Geophys. Res., B7, 6301–6309.
McClung, D. M., and J. O. Larsen (1989), Snow creep pressures: Effects of structure boundary conditions and snowpack properties compared

with field data, Cold Reg. Sci. Technol., 17, 33–47.
McClung, D. M., and P. A. Schaerer (1985), Characteristics of flowing snow and avalanche impact pressure, Ann. Glaciol., 6, 9–14.
McClung, D. M., and P. A. Schaerer (1993), The Avalanche Handbook, The Mountaineers, Seattle, Wash.
McClung, D. M., J. O. Larsen, and S. B. Hansen (1984), Comparison of snow pressure measurements and theoretical predictions, Can. Geotech.

J., 21, 250–258.
McClung, D. M., S. Walker, and W. Golley (1994), Characteristics of snow gliding on rock, Ann. Glaciol., 19, 97–103.
Mellor, M. (1968), Avalanches, U.S. Army Material Command, Cold Regions Research and Engineering Laboratory, Hanover, N. H.
Mellor, M. (1978), Dynamics of snow avalanches, in Developments in Geotechnical Engineering, vol. 14, edited by B. Voight, pp. 753–792,

Part A Rockslides and Avalanches, 1 – Natural Phenomena, Elsevier, Amsterdam.
Meusburger, K., G. Leitinger, L. Mabit, M. H. Mueller, A. Walter, and C. Alewell (2014), Soil erosion by snow gliding—A first quantification

attempt in a subalpine area in Switzerland, Hydrol. Earth Syst. Sci., 18(9), 3763–3775.
Mitterer, C. (2012), Formation of wet-snow avalanches, PhD thesis, ETHZ, Zurich, Switzerland.
Mitterer, C., and J. Schweizer (2012), Towards a better understanding of glide-snow avalanche formation, in Proceedings, 2012 International

Snow Science Workshop, pp. 610–616, Anchorage, Alaska. [Available at http://www.issw.net/.]
Moskalev, Y. D. (1967), The stability of snow cover on mountain slopes, Inst. Low Temp. Sci., A1, 1215–1222.
Mougin, P. (1913), Correction des avalanches dans les Grisons, Revue des Eaux et Forêts, 52, 513–532.
Mougin, P. (1922), Les Avalanches en Savoie, vol. IV, Ministère de l’Agriculture, Direction Générale des Eaux et Forêts, Service des Grandes

Forces Hydrauliques, Paris.
Nedderman, R. M. (1992), Statics and Kinematics of Granular Materials, Cambridge Univ. Press, Cambridge, U. K.
Neto, C., R. E. Drew, E. Bonaccurso, H. J. Butt, and V. S. J. Craig (2005), Boundary slip in Newtonian liquids: A review of experimental studies,

Rep. Prog. Phys., 68, 2859–2897.

ANCEY AND BAIN GLIDE AVALANCHES AND SNOW GLIDING 782

http://dx.doi.org/10.1103/PhysRevE.85.021301
http://dx.doi.org/10.1029/2011JF002065
http://www.issw.net/
http://www.issw.net/


Reviews of Geophysics 10.1002/2015RG000491

Newesely, C., E. Tasser, P. Spadinger, and A. Cernusca (2000), Effects of land-use changes on snow gliding processes in alpine ecosystems,
Basic Appl. Ecol., 1, 61–67.

Nicot, F. (2004), Constitutive modelling of snow as a cohesive-granular material, Granul. Matter, 6, 47–60.
Nohguchi, Y. (1989), A mathematical model for instability in snow gliding motion, Ann. Glaciol., 13, 211–214.
Norem, H. (1990), Estimating snow avalanche impact pressures on towers, in Workshop on Avalanche Dynamics, Communication No. 48,

edited by H. Gubler, pp. 42–56, Swiss Federal Institute for Snow and Avalanches, Davos, Switzerland.
Norem, H. (1992), A general discussion on avalanche dynamics, in Université Européenne d’été sur les Risques Naturels, edited by G. Brugnot,

pp. 135–148, Cemagref, Chamonix, France.
Nye, J. F. (1969), A calculation on the sliding of ice over a wavy surface using a Newtonian viscous approximation, Proc. R. Soc. London, Ser.

A, 311, 445–467.
Pailha, M., M. Nicolas, and O. Pouliquen (2008), Initiation of underwater granular avalanches: Influence of the initial volume fraction, Phys.

Fluids, 20, 111,701, doi:10.1063/1.3013896.
Pazwash, H., and J. M. Robertson (1975), Forces on bodies in Bingham fluids, J. Hydraul. Res., 13, 35–55.
Peitzsch, E. H., J. Hendrikx, D. B. Fagre, and B. Reardon (2012), Examining spring wet slab and glide avalanche occurrence along the

Going-to-the-Sun road corridor, Glacier National Park, Montana, Cold Reg. Sci. Technol., 78, 73–81.
Peitzsch, E. H., J. Hendrikx, and D. B. Fagre (2014), Assessing the importance of terrain parameters on glide avalanche release, in International

Snow Science Workshop 2014 Proceedings, pp. 708–716, Banff, Canada. [Available at http://www.issw.net/.]
Pfeiff, C. F., and E. J. Hopfinger (1986), Drag on cylinders moving through suspensions with high solid concentration, Physicochem.

Hydrodyn., 7, 101–109.
Pielmeier, C., F. Techel, C. Marty, and T. Stucki (2013), Wet snow avalanche activity in the Swiss Alps—Trend analysis for mid-winter season,

in International Snow Science Workshop, pp. 1240–1246, Grenoble, France.
Proske, D., R. Kaitna, J. Suda, and J. Hübl (2008), Abschätzung einer Anprallkraft für murenexponierte Massivbauwerke, Bautechnik, 85,

803–811.
Rabusseau, R. (2007), Les neiges labiles: Une histoire culturelle de l’avalanche au XVIIIe siècle, Presses d’Histoire Suisse, Genève, Switzerland.
Reardon, B. A., D. B. Fagre, M. Dundas, and C. Lundy (2006), Natural glide slab avalanches, Glacier National Park: A unique hazard and

forecasting challenge, in International Snow Science Workshop, pp. 778–785, ISSW, Telluride, Colo.
Roch, A. (1955), Le mécanisme du déclenchement des avalanches, in Les avalanches, pp. 94–105, Club Alpin Suisse, Bern, Switzerland.
Roch, A. (1961), Mesure de la force des avalanches, Sonderdruck aus Winterbericht 1960/61, Nr. 25, Eidgenössisches Institut für Schnee- und

Lawinenforschung, Davos, Switzerland.
Roch, A. (1980), Neve e Valanghe, Club Alpino Italiano, Torino.
Rudolf-Miklau, F., and S. Sauermoser (Eds.) (2011), Handbuch Technischer Lawinenschutz, Ernst and Sohn, Berlin.
Salm, B. (1964), Anlage zur Untersuchung dynamischer Wirkungen von bewegtem Schnee, Z. Angew. Math. Mech., 15, 357–375.
Salm, B. (1966), Contribution to avalanche dynamics, in Scientific Aspects of Snow and Ice Avalanche, vol. 69, pp. 199–214, IAHS Press,

Wallingford, Oxfordshire, U. K., and Davos, Switzerland.
Salm, B. (1967a), An attempt to clarify triaxial creep mechanics of snow, in Proceedings of the International Conference on Low Temperature

Science, vol. 1, edited by H. Ôura, pp. 857–874, Hokkaido Univ., Hokkaido, Japan.
Salm, B. (1967b), On nonuniform, steady flow of avalanching snow, in Assemblée générale de Berne, Publication No. 79, pp. 19–29, IAHS,

Wallingford, Oxfordshire, U. K., and Bern, Switzerland.
Salm, B. (1977), Snow forces, J. Glaciol., 19, 67–100.
Salm, B. (1982), Mechanical properties of snow, Rev. Geophys., 20, 1–19.
Salm, B. (1993), Flow, flow transition and runout distances of flowing avalanches, Ann. Glaciol., 18, 221–226.
Salm, B., A. Burkard, and H. Gubler (1990), Berechnung von Fliesslawinen: Eine Anleitung für Praktiker mit Beispielen, Communication No 47,

Eidgenössisches Institut für Schnee- und Lawinenforschung, Davos, Switzerland.
Sauermoser, S., M. Stoffel, and S. Margreth (2011), Entwicklung der Lawinen und des Lawinenschutzes: Historischer Überblick.
Scapozza, C., and P. Bartelt (2003), Triaxial tests on snow at low strain rate: Part II. Constitutive behaviour, J. Glaciol., 49, 91–101.
Schaeffer, D. G., and R. M. Iverson (2008), Steady and intermittent slipping in a model of landslide motion regulated by pore-pressure

feedback, SIAM J. Appl. Math., 69, 769–786.
Schaerer, P. A., and A. A. Salway (1980), Seismic and impact-pressure monitoring of flowing avalanches, J. Glaciol., 26, 179–187.
Schneebeli, M., M. Laternser, P. Föhn, and W. J. Ammann (1998), Wechselwirkungen zwischen Klima, Lawinen, und technischen Massnahmen,

Schlussbericht NFP 31, VDF, Zürich, Switzerland.
Schweizer, J., J. B. Jamieson, and M. Schneebeli (2003), Snow avalanche formation, Rev. Geophys., 41, 1016, doi:10.1029/2002RG000123.
Schweizer, J., K. Kronholm, J. B. Jamieson, and K. W. Birkeland (2008), Review of spatial variability of snowpack properties and its importance

for avalanche formation, Cold Reg. Sci. Technol., 51, 253–272.
Seguin, A., Y. Bertho, F. Martinez, J. Crassous, and P. Gondret (2013), Experimental velocity fields and forces for a cylinder penetrating into a

granular medium, Phys. Rev. E, 87, 12,201, doi:10.1103/PhysRevE.87.012201.
Shapiro, L. H., J. B. Johnson, M. Sturm, and G. L. Blaisdell (1997), Snow Mechanics: Review of the State of Knowledge and Applications, Cold

Regions Research and Engineering Laboratory, Hanover, N. H.
Shinojima, K. (1967), Study on the visco-elastic deformation of deposited snow, in Proceedings of the International Conference on Low

Temperature Science, vol. 1, edited by H. Ôura, pp. 875–907, Hokkaido Univ., Hokkaido, Japan.
Sochi, T. (2011), Slip at fluid-solid interface, Polymer Rev., 51, 309–340.
Sommerhalder, E. (1966), Lawinenkräfte und Objektschutz, in Schnee und Lawinen in den Schweizer Alpen. Hydrologisches Jahr 1964/1965,

Winterbericht Nr. 29, pp. 134–141, Eidgenössisches Institut für Schnee- und Lawinenforschung, Davos, Switzerland.
Sovilla, B., M. Schaer, M. A. Kern, and P. Bartelt (2008), Impact pressures and flow regimes in dense snow avalanches observed at the Vallée

de la Sionne test site, J. Geophys. Res., 113, F01010, doi:10.1029/2006JF000688.
Sovilla, B., M. A. Kern, and M. Schaer (2010), Slow drag in wet-snow avalanche flow, J. Glaciol., 56, 587–592.
Sovilla, B., S. Margreth, M. Schaer, E. Thibert, J. T. Fischer, D. Baroudi, and C. Ancey (2014), Taking into account wet avalanche load for the

design of tower-like structures, in International Snow Science Workshop, pp. 727–732, Banff, Canada. [Available at http://www.issw.net/.]
Steinkogler, W., B. Sovilla, and M. Lehning (2014), Influence of snow cover properties on avalanche dynamics, Cold Reg. Sci. Technol., 97,

121–131.
Stimberis, J., and C. M. Rubin (2011), Glide avalanche response to an extreme rain-on-snow event, Snoqualmie Pass, Washington,

J. Glaciol., 57, 468–474.
Stoffel, M., and C. Huggel (2012), Effects of climate change on mass movements in mountain environments, Prog. Phys. Geog., 36, 421–439.

ANCEY AND BAIN GLIDE AVALANCHES AND SNOW GLIDING 783

http://dx.doi.org/10.1063/1.3013896
http://www.issw.net/
http://dx.doi.org/10.1029/2002RG000123
http://dx.doi.org/10.1103/PhysRevE.87.012201
http://dx.doi.org/10.1029/2006JF000688
http://www.issw.net/


Reviews of Geophysics 10.1002/2015RG000491

Stone, M. B., D. P. Bernstein, R. Barry, M. D. Pelc, Y. K. Tsui, and P. Schiffer (2004), Stress propagation: Getting to the bottom of a granular
medium, Nature, 427, 503–504.

Sulzlée, C. (1950), Historique des méthodes de construction des ouvrages de protection contre les avalanches, Revue Forestière Française,
11, 634–644.

Szymkiewicz, A. (2013), Modelling Water Flow in Unsaturated Porous Media, Springer, Germany.
Tabuteau, H., P. Coussot, and J. R. de Bruyn (2007), Drag force on a sphere in steady motion through a yield-stress fluid, J. Rheol., 51,

125–137.
Takehara, Y., S. Fujimoto, and K. Okumura (2010), High-velocity drag friction in dense granular media, EPL, 92, 44,003,

doi:10.1209/0295-5075/92/44003.
Techel, F., and C. Pielmeier (2011), Point observations of liquid water content in wet snow—Investigating methodical, spatial and temporal

aspects, Cryosphere, 5, 405–418.
Techel, F., C. Peilmeier, G. Darms, M. Teich, and S. Margreth (Eds.) (2013), Schnee und Lawinen in den Schweizer Alpen: Hydrologisches Jahr

2011/12, Bericht Nr. 5, WSL, Birmensdorf.
Teufelsbauer, H. (2011), A two-dimensional snow creep model for alpine terrain, Nat. Hazard, 56, 481–497.
Teufelsbauer, H., Y. Wang, M. C. Chiou, and W. Wu (2009), Flow-obstacle interaction in rapid granular avalanches: DEM simulation and

comparison with experiment, Granul. Matter, 11, 209–220.
Thibert, E., P. Berthet-Rambaud, and D. Baroudi (2008), Avalanche impact pressure on an instrumented structure, Cold Reg. Sci. Technol., 54,

206–215.
Thibert, E., T. Faug, H. Bellot, and D. Baroudi (2013), Avalanche impact pressure on a plate-like obstacle, in International Snow Science

Workshop, pp. 663–670, Grenoble, France. [Available at http://www.issw.net/.]
Thual, O., and L. Lacaze (2010), Fluid boundary of a viscoplastic Bingham flow for finite solid deformations, J. Non-Newtonian Fluid Mech.,

165, 84–87.
Truesdell, C., and K. R. Rajagopal (1999), An Introduction to the Mechanics of Fluids, Birkhaüser, Boston, Mass.
Valt, M., and C. Paola (2013), Climate change in Italian Alps: Analysis of snow precipitation, snow durations and avalanche activity, in

International Snow Science Workshop, pp. 1247–1250, Grenoble, France. [Available at http://www.issw.net/.]
Veysey, J., and N. Goldenfeld (2007), Simple viscous flows: From boundary layers to the renormalization group, Rev. Mod. Phys., 79, 883,

doi:10.1103/RevModPhys.79.883.
Viglietti, D., M. Maggioni, E. Bruno, E. Zanini, and M. Freppaz (2013), Snow gliding and loading under two different forest stands: A case

study in the north-western Italian Alps, J. Forest. Res., 24, 633–642.
Voellmy, A. (1955a), Über die Zerstörungskraft von Lawinen, Schweizerische Bauzeitung, 73, 159–165.
Voellmy, A. (1955b), Über die Zerstörungskraft von Lawinen: III. Stau- und Druckwirkungen, Schweizerische Bauzeitung, 73, 246–249.
Walter, B., S. Horender, C. Gromke, and M. Lehning (2013), Measurements of the pore-scale water flow through snow using Fluorescent

Particle Tracking Velocimetry, Water Resour. Res., 49, 7448–7456, doi:10.1002/2013WR013960.
Weertman, J. (1979), The unsolved general glacier sliding problem, J. Glaciol., 23, 97–115.
Wieghardt, K. (1975), Experiments in granular flow, Annu. Rev. Fluid Mech., 7, 89–114.
Zakeri, A. (2009), Review of state-of-the-art: Drag forces on submarine pipelines and piles caused by landslide or debris flow impact,

J. Offshore Mech. Artic. Eng., 131, 14,001, doi:10.1115/1111.2957922.
Zanuttigh, B., and A. Lamberti (2006), Experimental analysis of the impact of dry avalanches on structures and implication for debris flows,

J. Hydraul. Res., 44, 522–534.
Zanuttigh, B., and A. Lamberti (2007), Instability and surge development in debris flows, Rev. Geophys., 45, RG3006,

doi:10.1029/2005RG000175.
Zarraga, I. E., D. A. Hill, and D. T. Leighton (2000), The characterization of the total stress of concentrated suspensions of noncolloidal spheres

in Newtonian fluids, J. Rheol., 44, 185–221.
Zhang, S. (1993), A comprehensive approach to the observation and prevention of debris flows in China, Nat. Hazard, 7, 1–23.

ANCEY AND BAIN GLIDE AVALANCHES AND SNOW GLIDING 784

http://dx.doi.org/10.1209/0295-5075/92/44003
http://www.issw.net/
http://www.issw.net/
http://dx.doi.org/10.1103/RevModPhys.79.883
http://dx.doi.org/10.1002/2013WR013960
http://dx.doi.org/10.1115/1111.2957922
http://dx.doi.org/10.1029/2005rg000175

	Abstract
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


